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Introduction



Returns to Scale
I Growing RTS:

• Costs less responsive to output.
• Output more responsive to inputs.

I Cost side: RTS = (d ln C/d ln y)−1 = AC/MC
I Production side: RTS = ∇y(X) =

∑M
i=1

∂ ln y
∂ ln xi
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Figure 1 Fixed Cost with Increasing MC, U-Shaped AC Curve
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Motivation

I Growing evidence of rising returns to scale (RTS).
I Intuitively, recent technologies ought to boost scale:

• intangible investment, IT and cloud infrastructure
I But as RTS rises in the UK, productivity is stagnating. Why?
I Typically higher RTS means higher productivity.

• In aggregate, depends on: sources of RTS and firm selection.
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Intuition

I For profit-maximising firms:

ν = µ(1− sπ)

I Interaction between RTS, market power, and firm survival.
I Technologies that enhance RTS may also raise market power.
I Higher markups chip away at the boost to aggregate productivity

by allowing low e�ciency firms to survive.
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What do we do? What do we find?

Theoretical Contribution
I How are productivity and RTS related?
I Source of RTS matters! RTS depend on MC ν, FC φ, and (indirectly)

the markup µ.
I Firm dynamics model with imperfect competition and endogenous

RTS.
Empirical Contribution
I Are the model predictions consistent with the data?
I Estimate RTS and productivity in the UK economy using recent

techniques in production function estimation.
I Rising RTS should raise aggregate productivity; higher market

power can overturn this result.
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Empirical Findings



What Do We Estimate?

I We estimate production functions:

ln yt(ı) = lnAt(ı) + β1 ln kt(ı) + β2 ln `t(ı) + εt(ı).

I Endogeneity problem: cannot observe productivity At(ı) which
a�ects optimal kt, `t choices.

I Use Ackerberg, Caves, and Frazer (2015) and Gandhi, Navarro, and
Rivers (2020) methodology.

I The coe�cients are

β1 =
∂ ln yt(ı)

∂ ln kt(ı)
= να β2 =

∂ ln yt(ı)

∂ ln `t(ı)
= ν(1− α).

I Sum of coe�cients is:
β1 + β2 = ν.
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Rising RTS

Figure 2 Returns to Scale in the UK, 2001 - 2014
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Higher Scale Across Sectors

Figure 3 Sectoral RTS Estimates 1998-2001 vs 2010-2014, ACF
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Model



Model Outline

I Imperfect competition with fixed markup µ→ downwards-sloping
demand.

I Firm pays cost κ to enter and receives technology draw A().
I Firm decides to produce, incurring labour overhead φ.
I Free-entry and zero-profit condition control which firms survive.

Cut-o� firm has productivity denoted A.
I Pareto distribution on A() with shape ϑ.
I Aggregate productivity:

lnTFP = ln Ω︸︷︷︸
Allocative

+ ln Â︸︷︷︸
Technical

Allocative E�ciency Technical E�ciency
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Firms

I Firm production function given by

yt() = At()
[
kt()

α`t()
1−α

]ν
,

I Production labour is total labour less fixed overhead:

`t() = `tot
t ()− φ.

I True RTS are a function of ν, φ and µ.
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Returns to Scale

I Response of firm output to a change in all inputs:

RTSt() ≡
∂ ln yt()

∂ ln kt()
+

∂ ln yt()

∂ ln `tott ()

= ν

(
1 + (1− α)

φ

`t()

)
= ν + (µ− ν)

[
A

A()

] 1
µ−ν

.

I RTS ∈ (ν, µ) for high and low productivity draws.
I Average across incumbents

¯RTS = ν +
ϑ(µ− ν)2

1 + ϑ(µ− ν)
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Endogenous Returns to Scale

Figure 4 Firm-level Returns to Scale
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How do ν, φ, and µ a�ect RTS & TFP?

I Higher ν → raises RTS & aggregate productivity. Graph

I Higher φ→ no e�ect on RTS & ambiguous e�ect on aggregate
productivity. Graph

I Higher µ→ reduces RTS & aggregate productivity. Graph
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Both ν and µ matter!
Calibrated Model

Figure 5 TFP Growth: Model vs Data

The TFP data series is from FRED. 13 / 14

https://fred.stlouisfed.org/series/RTFPNAGBA632NRUG


Summing Up

I How can we understand rising returns to scale and stagnating
productivity?

I RTS depends on marginal costs and fixed costs.
I Aggregate productivity rises with scale, but falls with markups.
I Empirical results confirm returns to scale have increased whilst

productivity growth has slowed.
I Take-away: Technologies that have lowered marginal costs – not

raised fixed costs – can enhance RTS + raise markups, and this
combination yields stagnating productivity growth.
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Returns to Scale and Firm Size (Production Side)
Intuition – Why do small firms have greater RTS?

Small Large
0

10

20

30

40
40

10
9

Overhead Labour
Production Labour

10% Rise Total

I 10% rise in total labour raises production labour by 100% for
small firm, just 13% for large firm.

I Small firm has greater returns to scale because output more
responsive to inputs.



Household I

I Household solves

max
{Ct,Kt+1}

∞
t=0

∞∑
t=0

βtU(Ct), β ∈ (0, 1),

s.t. Ct + It = rtKt + wtL
s + Πt + Tt

It = Kt+1 − (1− δ)Kt.

I Ls = 1 normalise labour supply.
I Tt are entry costs that government rebates to households.
I Πt are total profits. Revenue less factor payments less entry costs.
I Optimality condition is(

Ct+1

Ct

)σ
= β(rt+1 + (1− δ)).



Final Goods Producer I

I Final goods producer solves

ΠF
t = max

yt(ı)
Yt −

∫ Nt

0

pt(ı)yt(ı)dı

s.t. Yt = Nt

[
1

Nt

∫ Nt

0

yt(ı)
1
µ dı

] µ
Markup

I The parameter µ ∈ (1,∞) captures product substitutability.
I Optimality yields inverse-demand for firm:

pt(ı) =

(
Yt

Ntyt(ı)

)µ−1
µ

.

I Hence there is downward-sloping demand.



Intermediate Goods Producer I
Timeline

1. A firm pays cost κ to enter.
2. Receives technology draw A() where  ∈ [0, 1] is uniform.
3. Given productivity draw, it decides whether to be active

• Overhead cost φ causes some entrants to remain inactive.

4. All firms, both active and inactive, exit after one period.



Factor Market Equilibrium I

I Intermediate goods producer solves

πt() = max
kt(),`t()

pt()yt()− rtkt()− wt(`t() + φ)

I Subject to production function and inverse demand.
I Results in factor market equilibrium:

rt
pt()

=
ν

µ
α
yt()

kt()

wt
pt()

=
ν

µ
(1− α)

yt()

`t()
.

I Real factor prices equal to marginal revenue products of input.
I Firms charge markup µ ∈ (1,∞) of price over marginal cost.



Free Entry I

I All firms die after one period.
I A firm only produces if it makes positive profits, hence firm value

is given by
vt() = max{πt(), 0}.

I Free entry condition implies that the expected value of a firm
equals the entry cost ∫ 1

0

vt()d = κ.



Firm size ratio I

I From factor market equilibrium and inverse demand function.
I For two firms ı and  the ratio of firm size equals the scaled

productivity ratio:

pt()yt()

pt(ı)yt(ı)
=
kt()

kt(ı)
=
`t()

`t(ı)
=

[
At()

At(ı)

] 1
µ−ν

∀ı, ,



Zero-Profit Productivity Threshold I

I Given factor market equilibrium, profits are

π() =

(
1− ν

µ

)
pt()yt()− wtφ

I At productivity draw Jt ∈ (0, 1) firm makes zero profit(
1− ν

µ

)
pt(Jt)yt(Jt)− wtφ = 0.

I Productivity draw  ∈ (0, Jt) firm inactive;  ∈ (Jt, 1) firm active
I Jt ↑ stronger selection . Jt ↓ weaker selection.
I Expected profits conditional on surviving are

E[πt] = (1− Jt)wt(Jt)φ

(
1

1− Jt

∫ 1

Jt

[
A()

A(Jt)

] 1
µ−ν

d− 1

)



Average Productivity I

I Average technology of active firms:

Ā(J) =
1

1− Jt

∫ 1

Jt

A()d

I The following power mean appears later:[
1

1− Jt

∫ 1

Jt

A()
1

µ−ν d

]µ−ν
.

I Generalised version of Melitz (2003) and many others.



Aggregation I

I Operating firms are a fraction of entering firms

Nt = Et

∫ 1

Jt

d = Et(1− Jt)

I Jt is the fraction of inactive firms (“exit”) or selection.
I 1− Jt = N/E is fraction of active firms (“survival”).
I Aggregate factor inputs

Kt = Et

∫ 1

Jt

kt() d

Lt = Et

∫ 1

Jt

`t() + φ d



Aggregation II

I Utilization ut as the fraction of production labour in total labour:

ut ≡
Et
∫ 1

Jt
`()d

Lt

1− ut =
Ntφ

Lt
.

I We can derive aggregate output

Yt = TFP (Jt)K
αν
t L1−αν

t

I TFP captures aggregate productivity

TFP (Jt) ≡
(

1− ut
φ

)1−ν

u
(1−α)ν
t

[
1

1− Jt

∫ 1

Jt

A()
1

µ−ν d

]µ−ν



Closing the model I

I The resource constraint

Yt = Ct + It

I Entry fees are rebated to households by the government

Tt = Etκ

I Profits and labour market clearing

Πt = ΠF
t

Lt = Lst



Allocative E�ciency

I Allocative e�ciency is the allocation of resources across firms. It
depends on the number of firms N and the share of labour used
to produce output (rather than overheads) u.

Ω =

(
N

φ

)(1−ν)

u(1−α)ν u =

(
1 +

ϑ(µ− ν)− 1

νϑ(1− α)

)−1

I Number of firms N ↓ in ν, ↓ in φ, ↑ in µ.
I Share of production labour u ↑ in ν, una�acted by φ, ↓ in µ.

Return



Technical E�ciency

I Technical e�ciency is a power-mean of productivity for surviving
incumbents.

Â(J) ≡
[

1

1− J

∫ 1

J

A()
1

µ−ν d

]µ−ν
.

where J is the productivity cut-o� on the interval [0, 1].
I Under Pareto, it takes the form:

Â =

(
ϑ(µ− ν)

ϑ(µ− ν)− 1

)µ−ν
A = ΓA.

where A is the cut-o� productivity.
I Γ ↑ in ν, una�eced by φ, ↓ in µ.
I Productivity cut-o� A ↑ in ν, ↑ in φ, ↓ in µ.

Return



Average RTS I

I Average firm under Pareto has

¯RTS(J) = ν +
ϑ(µ− ν)2

1 + ϑ(µ− ν)

I As µ− ν → 0 then ¯RTS → ν = µ.
I Average returns to scale are increasing in span of control ν,

decreasing in markup µ.

∂ ¯RTS(J)

∂ν
=

1

(1 + ϑ(µ− ν))2 > 0

∂ ¯RTS(J)

∂µ
= −ϑ(µ− ν)(ϑ(µ− ν) + 2)

(1 + ϑ(µ− ν))2 < 0

I Average returns to scale are invariant to the fixed costs φ.
• All firms higher RTS.
• But some high RTS firms become inactive.
• Selection exactly o�sets individual firm e�ect.



Productivity is Determined by Selection I

I Average productivity changes through the selection channel:

d ln Ā

d lnx
=

∂ ln Ā

∂ ln(1− J)
× d ln(1− J)

d lnx
, where x = {ν, φ}

I Average productivity is always decreasing in survival:

∂ ln Ā

∂ ln(1− J)
= − 1

ϑ

I More survival means less selection, so lower average productivity.



Pareto Productivity Distribution I

Productivity A() is a random draw on the unit interval  ∈ [0, 1] using
inverse transform sampling. The Pareto CDF is given by

F (A;ϑ) = 1−
(
h

A

)ϑ
; A ≥ h > 0 and ϑ > 0.

If J ∼ Uniform(0, 1], then for  ∈ J , we have

1−
(
h

A

)ϑ
= 

Therefore
A() = h(1− )−

1
ϑ .

We set the scale parameter – which is the minimum possible value of
A – to h = 1. Calibrations of the shape parameter (tail index) are set to
match the firm size distribution, for example ϑ = 1.15 in Barseghyan
and DiCecio (2011) and ϑ = 1.06 in Luttmer (2007) and ϑ = 6.10 in
Asturias, Hur, Kehoe, and Ruhl (2022).



Pareto Productivity Distribution II
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Figure 6 Productivity with Pareto Distribution, h = 1, ϑ = {1.06, 1.15, 6.10}



Pareto Distribution
I Pareto distribution:

A() =
1

(1− )1/ ϑ
.

Pareto shape parameter

I ϑ > 1 and as ϑ→ 1 implies fatter right tail.
I The arithmetic average of technology is:

Ā(Jt) =
ϑ

ϑ− 1
A(Jt)

I Average productivity is linearly related to threshold productivity.
I An increase in Jt increases average productivity.
I The power mean, which appears in TFP, is a function of Ā(Jt):[

1

1− Jt

∫ 1

Jt

A()
1

µ−ν d

]µ−ν
=

(
1− 1

(µ− ν)ϑ

)−(µ−ν)(
ϑ− 1

ϑ

)
Ā(Jt)



ν raises productivity

Figure 7 E�ect of ν on TFP for di�erent µ

Return



φ may raise productivity

Figure 8 E�ect of φ on TFP for di�erent ν

Return



µ lowers productivity

Figure 9 E�ect of µ on TFP for di�erent ν

Return



Log-Normal Productivity Distribution I

We also consider the model with a log-normal productivity
distribution. The log-normal CDF is given by:

F (A;µ, σ) = Φ

(
lnA− µ

σ

)
; A ≥ 0 and σ > 0.

where Φ is the CDF of the standard normal distribution.
The PDF takes the equation:

f(A;µ, σ) =
1

Aσ
√

2π
exp

(
− (lnA− µ)

2

2σ2

)

We cannot obtain closed-form solutions for expected profits as is
possible with a Pareto distribution. Instead we use the following result
to obtain the expectation of profits, conditional on the (scaled)
productivity draw being above the cut-o� a∗.

E[a | a > a∗] = eµ+σ
2

2 ·
Φ
[
µ+σ

2−ln(a
∗
)

σ

]
1− Φ

[
ln(a

∗
)−µ
σ

]



Log-Normal Productivity Distribution II

With this expression, the free-entry condition is written:

κ = wφ

(
E[a | a > a∗]

a∗
− 1

)
However, note that the wage w is an equilibrium object which depends
on the productivity cut-o� a∗. We choose a∗ to solve the free-entry
condition, recomputing the wage which depends on a∗ at each
iteration. With a solution to the productivity cut-o�, we obtain average
productivity E[a | a > a∗] and average returns to scale ν + (µ− ν)a

∗

ā . In
addition, we compute firm-level returns to scale ν + (µ− ν) a

∗

a() for any
(scaled) productivity draw a().
Figures 10 and 11 show how changing φ a�ects average productivity and
average returns to scale when productivity is log-normally distributed.
Average productivity is rising in φ, as a higher fixed cost increases the
productivity cut-o�. In addition, average returns to scale rises in φ.



Log-Normal Productivity Distribution III

Figure 10 Average Productivity ā(J) and Fixed Cost φ
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ā



Log-Normal Productivity Distribution IV

Figure 11 Average returns to scale RTS(̄) and Fixed Cost φ
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TFPR as a proxy for technology

I Estimated TFPR, where hat notation is an estimated value, is:

ln ˆTFPRt() = ln pt()yt()− β̂1 ln kt()− β̂2 ln `t().

I In the model this residual is a composite of an aggregate demand
shock and firm-level technology:

lnTFPRt() =
µ− 1

µ
ln(Yt/Nt) +

1

µ
lnAt().

I Decker, Haltiwanger, Jarmin, and Miranda (2020, p. 3, 961)



Data

I ARDx dataset is the UK’s annual production survey.
I Runs from 1998 - 2014 and covers all sectors of the economy.
I 50,000 firms per year, 11m workers, 2/3 of GVA.
I All large firms (>250 employees) and a representative sample of

smaller firms.
I We use data on: value added, labour (no. employees), materials

and investment.
I We construct capital stock using the perpetual inventory method

from firm-level investment data.
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