#### Firms That Automate: Theory & Evidence

Joel Kariel

Competition and Markets Authority

EEA-ESEM, August 2023

#### Automation Perspectives

The "old view" versus the "new view" (Aghion, Antonin, et al. 2020).

- Negative direct effects of new technologies on workers:
  - Robots displaced 400,000 U.S. jobs (Acemoglu and Restrepo 2020)
  - Robots destroyed 275,000 German manuf. jobs (Dauth et al. 2021)
  - ▶ 5% fall in global employment due to robots (Carbonero et al. 2020)
  - Positive indirect effects: new tasks created (Acemoglu and Restrepo 2016) or wage pushed up by labour scarcity and complementarity (Aghion, Jones, et al. 2017)
- New evidence (Acemoglu, Lelarge, et al. 2020; Koch et al. 2019; Zator 2019; Humlum 2019) points to positive direct effects and negative indirect effects!

#### Overview

#### Data

Insights from unique Italian firm survey data:

- 1. Wide range of automation technologies
- 2. Panel of large sample
- 3. Track when firms automate

#### Results

- ► Automaters are larger, more productive & grow faster.
- Adoption of automation technology boosts firm employment.

#### Model

- Why? To understand aggregate effects.
- What? Hopenhayn (1992) with skilled/unskilled labour and automation technology.
- ► *Findings*? Reconcile firm-level and aggregate findings.

#### Roadmap

Literature Review

Data

Results

Model

Conclusions

Literature Review

#### Empirical Research on Automating Firms

The nascent research on firm-level automation is limited:

- 1. Time periods (Bartelsman et al. 1998; Dinlersoz and Wolf 2018; Kwon and Stoneman 1995; Zator 2019)
- 2. Automation technologies (Zator 2019; Acemoglu, Lelarge, et al. 2020; Stapleton and Webb 2020; Koch et al. 2019; Cheng et al. 2019; Humlum 2019)
- 3. Sample of firms (Dinlersoz and Wolf 2018; Kromann and Sorensen 2019; Doms et al. 1997; Bartel et al. 2007)

I use a novel dataset which asks about **many automation technologies** in **recent years**, across a **panel** of nationally **representative** firms.

#### Data

## Survey of Industrial and Service Firms (Banca d'Italia)

- Around 4,500 firms in each year.
- ► Approx. 3,500 firms in panel, 2010 2018.
- ► Firms employed across services and manufacturing.
- ► Representative of population of firms, with weights to adjust.
- Crucial: information on automation across firms.
- ► Great data because:
  - 1. Depth of automation technologies
  - 2. Timing of automation behaviour
  - 3. Panel component can track firms over time
  - 4. Size of sample

#### Questions on Automation

1. Firms asked in 2015, 2017, and 2019 about the use of:

- Artificial Intelligence
- Big Data
- Internet of Things
- Cloud Computing
- Industrial Robotics
- ► 3D Printing
- 2. Firms asked when they adopted each technology.
- 3. Share of investment in automation technologies.

#### Results

#### Automation Adopters Are Larger



Further Evidence Across Size Distribution

Less Clear Variation in Adoption by Age

#### Growth Rates

Firms that automate generally grow faster than non-adopters:



#### Empirical Approach

# Event Studies $\ln \underbrace{Y_{it}}_{\substack{\text{Employment} \\ \text{Wages} \\ \text{Turnover}}} = \mu_i + \gamma_t + \delta X_{it} + \sum_{j=\underline{j}, j\neq -1}^{\underline{j}} \beta_j \mathbb{1} \underbrace{(D_{it} = j)}_{\substack{\text{Relative time} \\ \text{from} \\ \text{adoption}}} + \epsilon_{it}$

Baseline event studies ) ( T

Two-way FEs

#### Log Employment Response to Automation Adoption



Estimated  $\beta_j$  for employment regressions, following Callaway and Sant'Anna (2021).

#### Event Study Estimates

Simple average of post-treatment  $\beta_j$  with weights given by group size (Callaway and Sant'Anna 2021).

Table: Estimates of post-adoption ATT for employment regressions.

|       | Cloud Computing | AI & Big Data | ΙοΤ       | Industrial Robotics | 3D Printing |
|-------|-----------------|---------------|-----------|---------------------|-------------|
| Coeff | 0.0231**        | 0.0629***     | 0.0446*** | 0.0374***           | 0.0658***   |
| SE    | (0.011)         | (0.0133)      | (0.0123)  | (0.0125)            | (0.016)     |

*Notes:* Robust standard errors clustered at firm level. Coefficients labelled by statistical significance at: \*\*\* 0.1%, \*\* 1%, \* 5%.

The following facts will be critical to the model:

- 1. Automating firms are larger, more productive and pay higher wages.
- 2. Adopters grow faster across age and size distributions.
- 3. Firms expand when adopting automation technologies.

## Model

#### What's the model for?

- Aggregate impact of automation (productivity and employment)
- General equilibrium effects (via prices and wages)

**Basic Intuition:** the incentive to automate rises in the savings to MC, falls in the automation FC, and rises in firm productivity.

Simple Model

### Model Outline

#### Standard heterogeneous firm dynamics model:

- ► Hopenhayn (1992).
- Adjustment costs on labour.

#### New ingredients:

- ► Task-based production function.
- ► Routine/nonroutine labour produce different sets of tasks.
- Automation allows routine workers to be replaced with technology.

Automating firms are larger and more productive, pay higher wages, grow faster, employ more skilled workers.

#### Model in Words

- ► Firms produce with decreasing returns to scale.
- Heterogeneous in productivity z, which follows AR(1) process.
- Firms face fixed costs to enter and produce.
- There is a productivity cut-off, below which firms exit.
- Firms can choose to automate, paying a fixed cost.
- A subset of firms endogenously choose to automate *if they are very productive*.

#### Task-based Production Function with Automation

Firm output depends on productivity and production over a set of tasks x of increasing 'difficulty':

$$\ln y = \ln z + \int_0^{\phi} \ln y(x) dx$$
 where  $\phi < 1$  for DRTS

▶ Production of a task is determined:

$$y(x) = \begin{cases} r(x) = R(x) + n^{r}(x) & \text{ for } x \in [0, \gamma) \\ n^{n}(x) & \text{ for } x \in [\gamma, \phi) \end{cases}$$



Firms must pay fixed cost  $c_a$  to use automation technology R.

• Therefore  $y = z(n^n)^{\alpha} r^{\gamma}$  where  $r = (n^r + R)$  and  $\alpha = \phi - \gamma$ .

Introduction of automation technology leads to:

- 1. Productive firms automate, and expand due to low-cost input.
- 2. Reallocation towards more-productive firms raises output-weighted productivity.
- 3. GE effect: price falls and low productivity firms exit.
- 4. Overall fall in employment, skewed towards routine workers.

Table

#### Model Fit

Table: Non-Targeted Moments

|                                                   | Model  | Data   |
|---------------------------------------------------|--------|--------|
| Routine employment share                          | 0.44   | 0.43   |
| Emp. share in automating firms                    | 0.48   | 0.42   |
| Output share in automating firms                  | 0.53   | 0.55   |
| $\Delta$ growth rates for automating firms (p.p.) | 0.007  | 0.007  |
| $\Delta$ exit rates for automating firms (p.p.)   | -0.089 | -0.176 |
| Relative productivity of automating firms (p.p)   | 0.09   | 0.03   |

#### Event Study in Model

Figure: Model Event Study for Automating Firms



#### Conclusions

#### Conclusions

- Firms that automate are different ex-ante: larger, and more productive.
- Thus endogenous automation decision matters for aggregate outcomes.
- Automation boosts employment of skilled workers.
- Aggregate effects: reallocation towards more productive firms; exit of marginal firms; fall in total employment.

#### Firm Size Distribution



#### Firm Age Distribution



#### Adoption More Common in Larger Firms







#### Less Systematic Variation in Adoption by Age







#### Regressions: Automation Investment Share

## Table: Estimated Coefficients from Advanced Tech. Investment Regressions

| Dependent variable: Share of Investment in Advanced Tech. |          |           |              |          |          |              |  |
|-----------------------------------------------------------|----------|-----------|--------------|----------|----------|--------------|--|
|                                                           | 2017     |           |              |          |          |              |  |
| log(Emp.)                                                 | 0.279*** | 0.278***  | 0.254***     | 0.337*** | 0.329*** | 0.299***     |  |
|                                                           | (0.025)  | (0.025)   | (0.026)      | (0.028)  | (0.028)  | (0.028)      |  |
| Age                                                       |          | -0.000004 | 0.0002       |          | 0.0034** | 0.0026*      |  |
|                                                           |          | (0.001)   | (0.001)      |          | (0.001)  | (0.001)      |  |
| Sector FE                                                 |          |           | $\checkmark$ |          |          | $\checkmark$ |  |
| Region FE                                                 |          |           | $\checkmark$ |          |          | $\checkmark$ |  |
| Ν                                                         | 3756     | 3749      | 3749         | 3926     | 3926     | 3926         |  |

Estimates are significant at levels of 0.1%: \*\*\*, 1%: \*\*, 5%: \*. Return

#### Growth Rates by Technology



- Industrial Robots
- **3D** Printing
- Mobile and Cloud
- AI and Big Data
- Internet of Things

#### Growth Rates by Technology



#### Simple Static Theoretical Framework

Consider simple production function with single input and DRS  $y = zx^{\alpha}$ . The optimal choice of the input is  $x = \left(\frac{z\alpha}{w}\right)^{\frac{1}{1-\alpha}}$ . A firm can choose labour *n* with wage *w* or robots *R* with unit cost q < w but fixed per-period cost *c*.

For a firm with productivity z, the optimal profit functions are:

$$\pi = z \left(\frac{z\alpha}{w}\right)^{\frac{\alpha}{1-\alpha}} - w \left(\frac{z\alpha}{w}\right)^{\frac{1}{1-\alpha}}$$
$$\pi^{a} = z \left(\frac{z\alpha}{q}\right)^{\frac{\alpha}{1-\alpha}} - q \left(\frac{z\alpha}{q}\right)^{\frac{1}{1-\alpha}} - c$$

A firm will automate if  $\pi^a > \pi$  (see next slide).

#### Simple Static Theoretical Framework

Incentive to automate if:

$$z^{\frac{1}{1-\alpha}}\alpha^{\frac{\alpha}{1-\alpha}}q^{\frac{-\alpha}{1-\alpha}} - z^{\frac{1}{1-\alpha}}\alpha^{\frac{1}{1-\alpha}}q^{\frac{-\alpha}{1-\alpha}} - c > z^{\frac{1}{1-\alpha}}\alpha^{\frac{\alpha}{1-\alpha}}w^{\frac{-\alpha}{1-\alpha}} - z^{\frac{1}{1-\alpha}}\alpha^{\frac{1}{1-\alpha}}w^{\frac{-\alpha}{1-\alpha}}$$

$$\implies q^{\frac{-\alpha}{1-\alpha}} - \frac{c}{z^{\frac{1}{1-\alpha}}}\frac{1}{\alpha^{\frac{\alpha}{1-\alpha}} - \alpha^{\frac{1}{1-\alpha}}} > w^{\frac{-\alpha}{1-\alpha}}$$

$$\implies \frac{-\alpha}{1-\alpha}\ln\left(\frac{q}{w}\right) > \ln\left(\frac{c}{z^{\frac{1}{1-\alpha}}}\frac{1}{\alpha^{\frac{\alpha}{1-\alpha}} - \alpha^{\frac{1}{1-\alpha}}}\right)$$

$$\implies \underbrace{\ln\left(\frac{w}{q}\right)}_{\text{Automation saving to MC}} > \frac{1-\alpha}{\alpha}\underbrace{\ln c}_{\text{Automation FC}} - \frac{1}{\alpha}\underbrace{\ln z}_{\text{Productivity}} - \frac{1-\alpha}{\alpha}\ln A(\alpha)$$

Therefore, the incentive to automate rises in the savings to MC, falls in the automation FC, and rises in firm productivity.

#### Full Model with Automation

- Firms endogenously choose to automate.
- ► They do automate *if they are very productive*.
  - So additionally  $\exists z^a : \forall z \ge z^a$ , firms automate.

$$v_t^a(z_t, n_{t-1}) = \max_{R_t, n_t^n, n_t^r \ge 0} \{ p_t z_t (n_t^n)^\alpha (n_t^r + R_t)^\gamma - w_t^n n_t^n - w_t^r n_t^r - q_t R_t \\ - g(n_t, n_{t-1}) - c_f + \beta \max\{ \int v_{t+1}^a(z_{t+1}, n_t) dF(z_{t+1}|z_t), -g(0, n_t) \} \}$$

$$v_t(z_t, n_{t-1}) = \max_{n_t^r, n_t^n \ge 0} \{ p_t z_t(n_t^n)^{\alpha} (n_t^r)^{\gamma} - w_t^n n_t^n - w_t^n n_t^r - g(n_t, n_{t-1}) - c_f + \beta \max\{ \int v_{t+1}(z_{t+1}, n_t) dF(z_{t+1}|z_t), -g(0, n_t) \} \}$$

$$\tilde{v}(z_t, n_{t-1}) = \max\{v_t^a(z_t, n_{t-1}) - c_a, v_t(z_t, n_{t-1})\}$$

#### Model Results

Table: Percentage point change relative to 'No Automation' model

| Aggregates: | Employment                   | -2.49 |
|-------------|------------------------------|-------|
|             | Price                        | -0.02 |
|             | # firms                      | -8.51 |
|             | Output-weighted productivity | +1.34 |
|             | Exit rate                    | +0.10 |
|             | Real wage                    | -1.24 |
| Firm Level: | Employment per firm          | +6.58 |
|             | Output per firm              | +0.16 |
|             | % firms that automate        | +27.4 |

#### Industry Breakdown of Technology Adopters

Table: Technology Adoption by Industry 2017 Graphs

| Technology          | High Adoption       | Low Adoption             |  |
|---------------------|---------------------|--------------------------|--|
| Cloud Computing     | Real Estate         | Hotels & Restaurants     |  |
|                     | Transport & Comms.  |                          |  |
| ΔΙ                  | Metal Manuf         | Chems, Rubber & Plastics |  |
|                     |                     | Other Manuf.             |  |
|                     | Real Estate         |                          |  |
| Big Data            | Transport & Comms.  | Hotels & Restaurants     |  |
|                     | Energy & Extraction |                          |  |
| Internet of Things  | Metal Manuf.        | Hotels & Restaurants     |  |
| internet of Things  | Energy & Extraction | Real Estate              |  |
| Industrial Robotics | Metal Manuf.        | Hotels & Restaurants     |  |
| 2D Printing         | Metal Manuf.        | Wholesale & Retail       |  |
| 50 Frinting         | Other Manuf.        | Hotels & Restaurants     |  |

### Industry Breakdown





Figure: Technology Adoption by Industry 2017 Return

tod, bev. & tob.

plessle & retail

attiles & clothing Emetatic mineral Other manuf.

metallic minecal Real estate etc.

tels & restau

losale & retail lias & clothing

#### Exporting Behaviour of Tech Adopters

#### Table: Average proportion of sales from exports by group, 2015

| Technology   | Cloud Computing | AI & Big Data | loΤ  | Industrial Robotics | 3D Printing |
|--------------|-----------------|---------------|------|---------------------|-------------|
| Adopters     | 0.09            | 0.06          | 0.04 | 0.05                | 0.11        |
| Non-Adopters | 0.11            | 0.10          | 0.11 | 0.10                | 0.10        |

*Notes:* Summary statistics from 2015 for firms that do and don't use advanced technologies. All values are weighted means. Bold values are the larger of the two, if there is a significant difference between adopters and non-adopters at the 1% level, computed with Welch's t-test and the Welch-Sattherwaite equation for degrees of freedom.



#### Exporting Behaviour of Tech Adopters





Figure: Tech Adoption by Exporting Status 2015 Return

#### Matching Automating Firms and Non-Adopters

Firms matched to compare size across 'similar' firms that did/did not adopt automation technologies:

Table: Propensity Score Matching Regression Results, 2015

| Dependent variable: Log Employment |           |          |               |          |                     |             |  |
|------------------------------------|-----------|----------|---------------|----------|---------------------|-------------|--|
|                                    | Any Tech. | Cloud    | AI & Big Data | loΤ      | Industrial Robotics | 3D Printing |  |
| Tech. Adoption                     | 0.461***  | 0.822*** | 0.623***      | 0.475*** | 0.370***            | 0.330**     |  |
| (nearest)                          | (0.06)    | (0.07)   | (0.11)        | (0.08)   | (0.10)              | (0.11)      |  |
| N                                  | 1914      | 1376     | 674           | 1042     | 720                 | 524         |  |
| Tech. Adoption                     | 0.586***  | 0.400*** | 0.818***      | 0.583*** | 0.535***            | 0.537**     |  |
| (full)                             | (0.05)    | (0.06)   | (0.07)        | (0.06)   | (0.07)              | (0.08)      |  |
| N                                  | 2554      | 2580     | 2547          | 2541     | 2544                | 2538        |  |

#### TWFE Estimates



Table: Estimates of  $\beta$  from homogeneous effect TWFE model: the % change in variables when adopting technology, relative to non-adopters

|                     |       | Cloud Computing | AI & Big Data | loΤ      | Industrial Robotics | 3D Printing |
|---------------------|-------|-----------------|---------------|----------|---------------------|-------------|
| Employment          | Coeff | 0.020***        | 0.052***      | 0.051*** | 0.042***            | 0.056***    |
|                     | SE    | (0.0043)        | (0.0061)      | (0.0048) | (0.0062)            | (0.0066)    |
| Blue-collar Emp.    | Coeff | -0.036*         | -0.030        | 0.0008   | 0.048               | -0.025      |
|                     | SE    | (0.015)         | (0.027)       | (0.021)  | (0.027)             | (0.028)     |
| Turnover per worker | Coeff | 0.0057          | -0.017        | 0.017*   | 0.065***            | 0.019       |
|                     | SE    | (0.0066)        | (0.0096)      | (0.0075) | (0.0097)            | (0.010)     |

*Notes:* Robust standard errors clustered at firm level. Coefficients labelled by statistical significance at: \*\*\* 0.1%, \*\* 1%, \* 5%.

#### Baseline Event Studies - AI/Big Data

Estimated  $\beta_i$  for adoption of AI/Big data.



#### Baseline Event Studies - IoT

Estimated  $\beta_i$  for adoption of Internet of Things.



#### Baseline Event Studies - 3D Printing

Estimated  $\beta_i$  for adoption of 3D Printing.



#### Baseline Event Studies - Robotics

Estimated  $\beta_i$  for adoption of Robotics.



#### Baseline Event Studies - Cloud Computing

Estimated  $\beta_i$  for adoption of Cloud Computing.

