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Abstract

We present a theory of rising scale economies and stagnating productivity in a

model of heterogeneous firms with imperfectly competitive product markets and

firm selection. Our theory shows that scale economies arising from fixed costs ver-

sus returns to scale differ in their effect on aggregate productivity. Using UK data,

we estimate a long-run increase in fixed costs and returns to scale. Our model

implies that this should have significantly increased aggregate productivity, both

through stronger selection of high-technical-efficiency firms and better allocation

of resources across firms. However, increasing markups can offset the productivity

gain. Higher markups cushion low-productivity firms’ revenues, allowing them to

survive, and constrain firm output, which limits exploitation of scale economies.
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Recent technological advances, such as cloud computing, can raise scale economies

allowing firms to expand at lower cost. But, as these technologies have emerged in

economies such as the US and UK, productivity has stagnated. In this paper, we de-

velop a theory to relate firm-level scale economies to aggregate productivity. We show

that increases in scale economies should have increased aggregate productivity signif-

icantly. However, rising markups offset the productivity gains.

We make three contributions: first, we document rising scale economies from two

determinants: higher returns to scale in variable production, which lowers marginal

costs, and higher fixed costs. Second, we develop a tractable model to study the ef-

fect of these determinants of scale economies on aggregate productivity. Third, we

conduct a quantitative exercise to replicate growing scale economies but stagnating

productivity in the UK economy.

We develop a heterogeneous firm model with monopolistic competition, fixed costs,

returns to scale and endogenous entry. We derive firm scale economies which is the

ratio of average cost to marginal cost. Firm scale economies are endogenous. They

consist of a fixed-cost component and a returns-to-scale component which dictates

marginal cost.1 The fixed cost and returns to scale determinants of scale economies

lead to different aggregate productivity outcomes. Higher fixed costs may increase or

decrease aggregate productivity depending on returns to scale in variable inputs at

the firm. Higher returns to scale in variable inputs may increase or decrease aggregate

productivity depending on the level of the markup.

We decompose aggregate productivity into allocative efficiency and technical ef-

ficiency. Allocative efficiency depends on the division of aggregate resources between

firms. If there are increasing returns to scale, allocative efficiency improves when ag-

gregate resources are concentrated on a small number of producers, since they exploit

scale economies. Whereas with decreasing returns the opposite holds. The number of

firms does not affect allocative efficiency when there are constant returns. Technical

efficiency measures the average technology of active firms. Technology is an exogenous

1Returns to scale are returns to scale in variable inputs. This measures the slope of the marginal cost
curve and is the sum of output elasticities to variable inputs.
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productivity characteristic that is revealed to firms upon entry. Given a technology

draw, a firm decides to be active or inactive based on a period-by-period fixed cost.

Therefore, technical efficiency captures the firm selection channel. That is, where the

exogenous productivity distribution is truncated.

Our theoretical results show that rising scale economies, whether through fixed

costs or returns to scale, strengthen selection, thus improving average technical effi-

ciency. However, in high-markup environments, the selection channel is weaker. With

high markups, selection weakens because small (low technology draw) firms get more

revenue for each unit sold, so it is easier to cover fixed costs and survive. Allocative

efficiency declines because markups increase the number of firms, constrain output,

and therefore limit the exploitation of scale economies. Therefore, ceteris paribus,

increases in scale economies should increase productivity. However, high mark-ups

weaken the passthrough of scale economies to productivity.

Our quantitative exercise applies the theoretical insights to UK aggregate produc-

tivity. We show that estimated increases in returns to scale in variable production

accompanied by estimated increases in markups replicate UK aggregate productivity

dynamics well. Rising fixed costs cannot explain the data as well. If markups had not

increased, the aggregate productivity of the UK would have been 20% higher through

efficiency gains from scale economies.

Our paper abstracts from the specific technologies that may have changed scale

economies, other than to characterise them by increasing fixed costs or raising returns

to scale in variable production, which lowers marginal costs. Industry studies provide

some qualitative insight. Ganapati (2021) shows that information technology reduced

marginal costs and increased markups in the wholesale sector. For the manufacturing

sector, Bloom, Garicano, Sadun, and Van Reenen (2014) study specific information

technologies, such as enterprise resource planning, that increase managers’ span of

control and, therefore, lower marginal costs. Syverson (2019) hypothesises a shift

towards products with lower marginal costs, such as software and pharmaceuticals.

These examples seem relevant for a services-dominated economy like the UK.
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Therefore, our conclusion is that emerging technologies have increased returns

to scale, which has decreased marginal costs and enhanced scale economies. These

scale economies should translate into productivity gains. However, increasing market

power limits the exploitation of scale economies and, in turn, productivity gains.

Related Literature

Recent work by Bilbiie and Melitz (2020), Edmond, Midrigan, and Xu (2021), and

Baqaee, Farhi, and Sangani (2023) demonstrates the importance of returns to scale

for aggregate analysis. The work is mostly focused on external returns to scale (love

of variety) that arise from aggregation. However, Baqaee, Farhi, and Sangani (2023)

also note that returns to scale at the firm level magnify aggregate returns to scale.

Similarly to our analysis, the effects of scale economies are smaller in efficient (low

markup) economies. Our analysis is parametric; we focus on the technical parame-

ters of the production function that cause scale economies, and in turn affect aggre-

gate TFP through technical and allocative efficiency. This is complementary to Baqaee

and Farhi (2020) who provide non-parametric aggregation results for economies with

scale economies. Both parametric and non-parametric approaches find that the role

of allocative efficiency grows as distortions increase. And, we show that this is quan-

titatively relevant to replicate UK productivity dynamics.

In order to understand the consequenes of rising market power, De Loecker, Eeck-

hout, and Mongey (2021) present a quantitative model with oligopolistic competition

and fixed costs. This allows them to compare the role of technology on the supply-side

versus competitive factors on the demand-side. We differ by focusing on analytical re-

sults to understand the supply-side mechanisms through which different technologies

affect scale economies, and in turn aggregate productivity. Our demand-side is re-

stricted to monopolistic competition for tractability. Collectively, our papers advance

the idea that to reconcile changing technologies on the supply side, market power

must increase on the demand side.

Recent research in endogenous growth theory shows that changing technologies
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affect firm cost structures, which in turn explains stagnating growth. Scale economies

are not the direct focus, but they are implicit in the arguments. De Ridder (2019)

models intangible inputs as reducing marginal costs and raising fixed costs. Aghion,

Bergeaud, Boppart, Klenow, and Li (2019) model a fixed cost that increases with the

number of product lines, but as technology improves, the fixed cost becomes less sen-

sitive to the number of products.

Our model is a neoclassical growth model with heterogeneous firms based on

Hopenhayn and Rogerson (1993), Restuccia and Rogerson (2008), and Barseghyan

and DiCecio (2016). The model is similar to two-factor closed economy versions of

Melitz (2003) and Ghironi and Melitz (2005). We include firm production with fixed

costs and returns to scale similar to models by J. Kim (2004), Atkeson and P. J. Kehoe

(2005), Bartelsman, Haltiwanger, and Scarpetta (2013), and D. Kim (2021).

Several recent articles provide estimates of returns to scale in the US economy.

Gao and Kehrig (2021) estimate slightly decreasing returns to scale in US manufac-

turing firms. Using similar US data, Ruzic and Ho (2019) find a decline in returns

to scale from 1982 to 2007. Using Compustat data, Chiavari (2022) documents rising

returns to scale through production function estimation, and De Loecker, Eeckhout,

and Unger (2020, Figure 7) documents increasing overhead cost shares as evidence of

rising scale economies. Baqaee, Farhi, and Sangani (2023) also document economies

of scale in US firms. Lashkari, Bauer, and Boussard (2019) find cost elasticity below

one for French corporations, which implies economies of scale. For the UK economy,

Oulton (1996), Harris and Lau (1998), and Girma and Görg (2002) document constant

or slightly decreasing returns to scale for manufacturing firms.

1 Scale Economies

In this section, we define some concepts that are subject to ambiguity across fields.

Internal vs. External Returns to Scale: Our interest is internal returns to scale, not

external returns to scale that arise from aggregation. Internal returns to scale and
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scale economies arise within the firm from the production technology or fixed costs.

External returns to scale are gains in aggregate output from changing aggregate in-

puts. They arise from grouping firms together.2

Scale Economies: Scale economies describe the response of firm costs to output

changes. They are measured by the inverse cost elasticity, which is the average cost

to marginal cost ratio.3

Returns to scale: Returns to scale are a property of the production technology. They

are captured by the degree of homogeneity of the production function. On the cost

side, this parameter represents the slope of a firm’s marginal cost curve.4 For homoth-

etic production functions, the scale elasticity of the cost function equals the returns to

the scale of the production function.5 Fixed costs lead to non-homothetic production

functions which break this relationship.

Imprecision over the terms scale economies and returns to scale extends beyond

semantics. Erroneous conclusions and calibrations occur when the AC/MC ratio is

estimated but is interpreted as the production function returns to scale.6

1.1 Graphical Intuition of Scale Economies

To aid understanding throughout the paper, it is helpful to present the cost curve

scenarios of the production functions we consider. We define scale economies as the

inverse cost elasticity, which is the ratio of average cost to marginal cost. With firm

2On the demand-side, with a consumption aggregator, the analogous concept is love-of-variety.
Other terms used are ‘thick markets’ (Caballero and Lyons 1992), Ethier effects (Ethier 1982), and
agglomeration effects (Krugman 1991).

3This definition of scale economies is common in industrial organization textbooks (Panzar 1989;
Church and Ware 2000; Davis and Garcés 2009), recent examples are (Syverson 2019; Conlon, Miller,
Otgon, and Yao 2023). It is sometimes recognised in macroeconomics, for example (Rotemberg and
Woodford 1993; Basu 2008; Baqaee, Farhi, and Sangani 2023; Lashkari, Bauer, and Boussard 2019).

4Occasionally, researchers recognise this parameter as ‘span of control’ since it is mathematically
analogous to the span of control parameter in Lucas (1978). In that context, it captures diminishing
returns in managerial span of control. Hopenhayn (2014) analyses the equivalence with returns to
scale.

5Silberberg and Suen (2000, Ch. 8) present traditional proofs.
6Basu (2008) discusses this in detail. Since homothetic production functions are common in macroe-

conomics, the term returns to scale is often used universally even in the presence of fixed costs.
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output y, we have:

S(y) ≡
(
∂C
∂y

y

C

)−1

=
AC(y)
MC(y)

where AC ≡ C/y and MC ≡ ∂C/∂y. There are economies of scale if S(y) > 1; con-

stant scale economies if S(y) = 1; and diseconomies of scale if S(y) < 1. Figure 1

presents a firm with a U-shaped average cost curve due to increasing marginal costs

and fixed cost.7 At the intersection of average and marginal cost, a firm has constant

scale economies. To the left there are economies of scale. To the right there are dis-

economies of scale. Therefore, the S(y) curve shows that size and scale economies are

negatively related at the firm level.8

AC

MC

S(y)

Output

C
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ts
A
C
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d
M
C

Figure 1: Fixed Cost with Increasing MC, U-Shaped AC Curve

Profits, Markups and Scale Economies: Scale economies can be represented directly

from the profit definition. This yields an expression based on market structure, namely

markups and profits. Scale economies can also be written in terms of technical prop-

erties of the production function, namely fixed costs and the homogeneity parameter.

This will depend on the production function and can be derived from the cost func-

tion or the production function.9 Consider the definition of profits as revenue minus

7In the appendix we present plots considering the three main cases that arise in our theory: a fixed
cost with increasing, constant or decreasing marginal cost.

8In the appendix we present a graphical explanation of scale economies from the production side.
9In this paper we will show this for labor denominated fixed costs beginning with the production

function. Savagar (2021) shows it for output-denominated fixed costs beginning with the cost function.
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costs

Profit = Price×Output−Cost = Revenue−Cost.

Divide by revenue, define AC=Cost/Output, and multiply by MC/MC, yields:

AC
MC

=
Price

Marginal Cost

(
1− Profit

Revenue

)
.

This shows that a firm’s scale economies are its markup multiplied by its profit share

remainder (i.e. total cost share).10 A firm that makes zero-profits has scale economies

equal to its markup.11 And, a firm with positive profits will have lower scale economies

than the zero-profit firm. Higher scale economies imply higher markups lower profit

shares.

2 Empirical Motivation

We are motivated by the presence of rising scale economies at the firm level, while

aggregate measures of productivity are stagnating.

2.1 Productivity

Figure 2 shows UK aggregate TFP growth over time. Aggregate productivity growth

increases until 2007 but then declines and stagnates. This captures the UK ‘produc-

tivity puzzle’ (Barnett, Batten, Chiu, Franklin, and Sebastia-Barriel 2014; Goodridge,

Haskel, and Wallis 2016).

10The total cost share is the sum of the variable cost share and the fixed cost share.
11This result was used in earlier empirical work on returns to scale, when profits in the US economy

were close to zero (Basu and Fernald 1997).
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Figure 2: UK TFP Growth, 1998 - 2014
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TFP growth (aggregate) is from the Penn World Table 10.01 (Feenstra, Inklaar, and Timmer 2015),
accessed from FRED: Total Factor Productivity at Constant National Prices for United Kingdom (RTF-
PNAGBA632NRUG).

2.2 Returns to Scale in Variable Inputs

To measure returns to scale, we estimate firm-level production functions on UK data

from the Annual Respondents Database (ARDx). The data contains approximately

50,000 firms each year, 11 million workers, and two-thirds of gross value added. Firms

report a range of production data, including gross output, value added, labor, materi-

als, and investment.12

We assume that each firm  has the following Cobb-Douglas production function

yt = Atk
βk
t `

β`
t

where yt, kt, `t are firm value-added (or gross output) and inputs of capital and labour.13

At is a measure of firm-level technical efficiency which we do not observe. Our aim is

to estimate the βk and β` parameters which represent output elasticities. The sum of

12In the appendix, we provide details about the data, data cleaning, deflation, capital construction,
SIC code matching, and summary statistics.

13Output is represented by value-added or gross output depending on the estimation methodology.
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these output elasticities is returns to scale in variable inputs.

Production function estimation suffers from omitted variable bias. The bias occurs

because the input variables are correlated with the unobserved firm-level technology

term. We use several production function estimation methodologies which are de-

signed to address this problem. Further details are available in Olley and Pakes (1996),

Levinsohn and Petrin (2003), Ackerberg, Caves, and Frazer (2015), and Gandhi, Navarro,

and Rivers (2020). Since we estimate Cobb-Douglas production functions, we obtain a

single, time-invariant, coefficient for each input in the production function. We divide

the data into sub-periods to estimate changes over time.

Figure 3 shows average returns to scale across firms in the UK over time using

the estimation methodology of Gandhi, Navarro, and Rivers (2020). There is a rising

trend in returns to scale, from weakly decreasing to above unity. In the appendix, we

provide estimates at the industry level and for alternative estimation methodologies.

All the results imply rising returns to scale.

Figure 3: UK RTS, 2001 - 2014
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RTS are the sum of firm-level coefficients from a Cobb-Douglas, gross-output, production function es-
timated with the methodology of Gandhi, Navarro, and Rivers (2020). To obtain time-varying estimates
of RTS, we estimate production functions over rolling windows.
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2.3 Fixed Cost Share in Revenue

An alternative contributor to firm scale economies is the fixed cost share. In Figure 4,

we use the administration expense share in revenue as a proxy for a companies’ fixed

cost share. The figure shows rising fixed cost shares which is consistent with rising

scale at the firm level. Administration expenses in UK company accounts are the costs

incurred by a company that are not directly related to the production, manufacture or

sale of goods or services. In the Appendix we discuss the data in greater detail and

provide examples of administrative costs.

Figure 4: Median Fixed Cost Share in Sales, Source: BvD FAME
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The plot shows the median ‘Administration Expenses’ share in ‘Turnover’ for UK firms.

3 Model

The household side of the model follows a neoclassical growth setup. The production

side of the economy has firm entry and exit, monopolistic competition, and produc-

tion functions that have different sources of scale economies. There are two stages to

the firm problem. First, a firm decides whether to pay a fixed, output-denominated,

entry cost based on the expected profits they would receive from optimal production

decisions. Second, given a firm has entered, it makes optimal production decisions.

Upon entering, the firm receives a productivity draw at which point it decides whether
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to produce or not, and if so how much to produce. The decision to produce or not is

based on whether producing output will generate enough revenue to cover a fixed,

period-by-period, labour-denominated, overhead cost. At the end of the period all

firms exit exogenously.

3.1 Households

A representative household maximizes lifetime utility subject to a budget constraint

max
{Ct ,Kt+1}∞t=0

∞∑
t=0

βt
C1−σ
t − 1
1− σ

, β ∈ (0,1),

s.t. Ct + It = rtKt +wtL
s +Πt + Tt (1)

It = Kt+1 − (1− δ)Kt. (2)

Households own all firms in the economy and receive profit Πt. Tt is a lump-sum

transfer from the government which will equal to the entry fees paid by firms. House-

holds supply a fixed amount of labour that is not time-varying, we normalize this to

one:

Ls = 1. (3)

Households own the capital stock and rent it to firms at a rental rate rt, hence the capi-

tal investment decision is part of the household problem. The household optimization

problem satisfies the following condition

(
Ct+1

Ct

)σ
= β(rt+1 + (1− δ)). (4)

plus a transversality condition and the resource constraint.
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3.2 Firms

3.2.1 Final goods producer

The final goods aggregator is

Yt =Nt

[
1
Nt

∫ Nt

0
yt(ı)

1
µdı

]µ
. (5)

There are Nt intermediate producers on the interval ı ∈ (0,Nt). The parameter µ ≥ 1

captures product substitutability.14 The aggregator has constant returns to scale.15

The maximization problem of the final goods producer is

ΠF
t = max

yt(ı)
Yt −

∫ Nt

0
pt(ı)yt(ı)dı (6)

s.t. Yt =Nt

[
1
Nt

∫ Nt

0
yt(ı)

1
µdı

]µ
(7)

The firm is infinitesimal so firm level output does not affect Yt. The first-order condi-

tion with respect to yt(ı) gives the inverse-demand for a firm

pt(ı) =
(
Ntyt(ı)
Yt

) 1−µ
µ

. (8)

3.2.2 Intermediate goods producer

The timeline for the intermediate goods producer is as follows. The firm pays cost κ to

enter. It receives a draw  ∈ (0,1) from an i.i.d uniform distribution which translates to

productivity A(). It then decides whether to produce which incurs a fixed overhead

cost. If the firm does not produce it remains inactive which we refer to as endogenous

exit. All firms, active and inactive, exit at the end of one period.

14Perfectly substitutable products µ = 1 are admissible when intermediate producers have a fixed cost
and increasing marginal cost (φ > 0 and ν ∈ (0,1)). This is the case of perfect competition where profit
maximizing intermediate producers take price as given. Under perfect competition all firms produce
at the minimum on their average cost curves with perfectly-elastic, horizontal, demand curves.

15A typical CES production function would have the pre-multiplying term asN
µ
t , such that is cancels

with the 1/Nt inside the square brackets. However, this creates increasing scale economies in aggrega-
tion. Since our interest is scale economies at the firm level, we remove this additional source of scale in
aggregation.
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The production function for a firm with productivity  is given by

yt() = A()
[
kt()

α`t()
1−α

]ν
. (9)

The parameter 0 < α < 1 captures the capital cost in total variable cost. The parame-

ter ν > 0 captures returns to scale in variable inputs. This represents the slope of the

marginal cost curve or returns to scale in variable inputs. There are decreasing returns

in variable production when ν ∈ (0,1), constant returns when ν = 1, and increasing re-

turns when ν > 1. As ν : 0→ 1 the marginal cost curve flattens which raises returns to

scale (increases returns to scale in variable inputs), when ν = 1 the marginal cost curve

is flat, and as ν : 1→∞ the marginal cost curve is increasingly downward sloping.16

The labour employed to produce output is:

`t() = `tot
t ()−φ, (10)

where `tot
t () represents the total labour employed by the firm, and φ is an overhead

cost. Both φ and ν determine scale at the firm level.

The firm solves the following profit maximization problem:

max
kt(),`t()

pt()yt()− rtkt()−wt(`t() +φ) (11)

subject to the production function (9) and inverse demand function (8). The optimal-

ity conditions imply constant factor shares in revenue:

rtkt()
pt()yt()

=
ν
µ
α (12)

wt`t()
pt()yt()

=
ν
µ

(1−α). (13)

For the second-order conditions on profit maximization to hold, a necessary condition

is: ν < µ. We present the first- and second-order conditions in Appendix D.1. Addi-

16We show that downward sloping MC curve must be shallower than the downward sloping demand
curve to ensure a profit-maximizing equilibrium where MR =MC exists.
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tionally, we assume αν < 1.17 Therefore, we assume the following upper-bound on

returns to scale in variable inputs.

Assumption 1. Increasing returns in variables inputs are limited as follows:

ν <min
{ 1
α
,µ

}
. (14)

This always holds with decreasing returns in variable inputs since ν < 1. A higher

markup and a lower capital cost share in variable costs allow for greater returns to

scale in variable inputs. Empirically, the markup constraint is more likely to prevail.

For example, markups of 1.25 and 1.5 are large but plausible, and capital shares in

variable costs of 0.25 and 0.5, which are also plausible, give constraints of 4 and 2

which are higher than the markup constraints.

From the factor market equilibrium conditions, the ratio ν/µ = (w`+ rk)/py is vari-

able cost share in revenue. The remaining share, 1− (ν/µ), is the profit plus fixed cost

share in revenue. Additionally, α = rk/(w` + rk) and 1−α = w`/(w` + rk) are the share

of capital and production labour in variable costs. Also, αν = µ(rk/py) is the capital

share in revenue scaled by the markup.

3.2.3 Ratio of firm size

Firm output, revenue and inputs are proportional to productivity to the power of a

constant y()
1
µ ,p()y(), k(), `() ∝ A()

1
µ−ν . Consequently, for a given distribution of A()

across firms, changes in µ and ν affect the distribution of labour, capital, revenue and

output across firms.

The inverse demand condition and factor price equilibrium conditions imply that

for any two firms, ı and , their relative revenue and input choices are proportional to

17This assumption is not required for profit maximization to hold. Imperfect competition ensures
that firm-level revenue is concave in inputs, even if output is not concave in inputs. That is, marginal
revenue products are decreasing in their respective inputs, even if marginal products are not. Specif-
ically, 0 < αν < 1 ensures firm-level output is concave in capital, and aggregate output is concave in
aggregate capital and not decreasing in aggregate labour.
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their relative (scaled) productivity:

pt()yt()
pt(ı)yt(ı)

=
kt()
kt(ı)

=
`t()
`t(ı)

=
(
A()
A(ı)

) 1
µ−ν
, ∀ı, . (15)

Additionally, if we use equation (8) to substitute out pt, we can write:

yt()
yt(ı)

=
(
A()
A(ı)

) µ
µ−ν
. (16)

3.2.4 Zero-profit firm

We assume there is a threshold productivity draw Jt ∈ (0,1) characterised by zero prof-

its, which yields threshold technology At. If a firm receives a productivity draw below

the threshold productivity level they would make negative profits from production.

Consequently, they prefer to produce zero and make zero profits. Therefore we define

profits and characterise the threshold productivity as follows:

πt() = pt()yt()− rtkt()−wt(`t() +φ) (17)

πt(Jt) = 0. (18)

A helpful reduced-form expression for profits combines the profit condition with

equilibrium factor prices, with the zero-profit condition and with the ratio of revenues

to scaled productivity:

πt() = φwt

(A()
At

) 1
µ−ν
− 1

 . (19)

3.2.5 Free Entry

All firms die after one period. A firm only produces if it makes positive profits, hence

firm value is given by

vt() = max{πt(),0}. (20)
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We assume a free entry condition which implies that the unconditional expected value

from entering equals to the entry cost κ:

E[vt()] = κ. (21)

The cost of entry κ is denominated in consumption units and will be rebated to house-

holds in a lump-sum. Combining (20) and (21) with our reduced-form profit expres-

sion (19) yields:

φwt(1− Jt)


(
Ât
At

) 1
µ−ν

− 1

 = κ. (22)

This shows that profits from being active multiplied by the probability of being active

1−Jt equals the entry cost. We have defined the power mean of technology, conditional

on being active, as

Â(Jt) ≡ E

[
A()

1
µ−ν

∣∣∣∣  > Jt]µ−ν =
[

1
1− Jt

∫ 1

Jt

A()
1
µ−ν d

]µ−ν
. (23)

The power mean is a weighted average of firm-level productivity.18

3.3 Entry

Operating firms Nt are the subset of firms who decide to produce once receiving their

productivity draw. Entrants Et are all firms who pay the entry cost.

Nt =
∫ Nt

0
dı = Et

∫ 1

Jt

d = Et(1− Jt). (24)

We can interpret the productivity cut-off Jt as the probability of exit and 1 − Jt as the

probability of surviving.

18The term Â(Jt) generalizes Melitz (eq. 7 2003, p. 1700) and Colciago and Silvestrini (eq. 31 2022, p.
10). This term is equivalent to these papers if ν = 1 and the markup is expressed in terms of elasticities
of substitution between goods, for example µ = θ/(θ − 1) where θ is the elasticity parameter. Notably,
with ν , 1, we cannot represent the power mean of technology Â as an output-weighted harmonic
average of unscaled technology draws.
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3.4 Aggregation

To get aggregate output and aggregate inputs, we use that the index of operating firms

(0,Nt) is equivalent to the measure of entering firms Et constrained over the region of

operation (Jt,1).

3.4.1 Aggregate Factor Inputs

Aggregate labour is comprised of production labour and non-production labour

Kt =
∫ Nt

0
kt(ı)dı = Et

∫ 1

Jt

kt()d (25)

Lt =
∫ Nt

0
[`t(ı) +φ]dı = Et

∫ 1

Jt

[`t() +φ]d. (26)

We define ut as the fraction of aggregate labour that goes to production

ut ≡
Et

∫ 1
Jt
`()d

Lt
=

∫ Nt
0
`t(ı)dı

Lt
(27)

1−ut =
Et(1− Jt)φ

Lt
=
Ntφ

Lt
. (28)

3.4.2 Aggregate Output

We can express aggregate output as:

Yt =N 1−ν
t Ât

[
Kαt (utLt)

1−α]ν (29)

We present a derivation of this result in the appendix. The result shows that aggre-

gate output is the sum of Nt firms, which are homogeneous, i.e. dividing aggregate re-

sources evenly
[
(Kt/Nt)α (utLt/Nt)

1−α]ν , and each endowed with a power mean of tech-

nology Ât. In equation (29) there are constant returns in capital, production labour

and number of firms. That is, if Kt,utLt,Nt change by a fixed proportion, then aggre-

gate output will change by this fixed proportion. If Nt is treated as a fixed factor, then

external returns to scale in aggregate capital and production labour is given by ν.
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3.4.3 Aggregate Factor Market Equilibrium

The wage, rental rate on capital and zero-profit condition are

rt = α
ν
µ
Yt
Kt

(30)

wt = (1−α)
ν
µ
Yt
utLt

(31)

wt
Yt

Ntφ

Lt
=

(
1− ν

µ

)(
At

Ât

) 1
µ−ν

(32)

3.5 Government Budget Constraint and Resource Constraints

The resource constraint is

Yt = Ct + It. (33)

The government rebates entry fees to households. The government budget constraint

equates taxes to government expenditure

Tt = Etκ. (34)

Profits and labour markets clear:

Πt = ΠF
t (35)

Lt = Ls. (36)

Aggregate profits received by the household from owning firms equate to profits earned

by the final goods producer. The profits are zero in equilibrium. Labour demanded

by the firm equates to labour supplied by the household which is normalised to 1.

3.6 Equilibrium Definition

An equilibrium is a sequence of prices {rt,wt}∞t=0; firm capital and labour demands

{`t(), kt()}∞t=0; firms’ operating decisions to be active or inactive, measures of entry

and active firms {Et,Nt}∞t=0; consumption and capital {Ct,Kt+1}∞t=0, such that
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1. households choose C and K optimally by solving problem (1);

2. firms compete under monopolistic competition and decide optimally whether to

produce or remain inactive, and demand factors according to (11);

3. the free entry condition holds (21);

4. markets clear for aggregate labour (26), aggregate capital (25), goods market

(33), labour market (36) and aggregate profits (35);

5. the government budget constraint is satisfied (34).

3.7 Model Characteristics

Before imposing a Pareto distribution on the technology drawsA(), we can make some

general characterisations from the model equilibrium conditions.

3.7.1 Aggregate Labour Utilized for Production

The level of aggregate labour utilized for production ut is a function of Jt only. In

equation (32), use Ntφ/Lt = 1 − ut. Hence, there are two equations, (31) and (32),

determining the wage as a function of u and J . If we equate these two wage equations,

we get the level of utilization as a function of J :

ut =

1 +
1

1−α

(µ
ν
− 1

)(At

Ât

) 1
µ−ν


−1

.

In turn, by equation (31) this implies that the aggregate labour share wtLt/Yt is only a

function of Jt.
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3.7.2 Aggregate Productivity

We can rearrange aggregate output into Cobb-Douglas form, where we use Nt = (1 −

ut)Lt/φ for φ > 0, which gives:

Yt = TFPtK
αν
t L1−αν

t (37)

where, TFPt ≡
(
Nt
Lt

)1−ν (
1−

Ntφ

Lt

)(1−α)ν

Ât (38)

=
(

1−ut
φ

)1−ν
u

(1−α)ν
t Ât (39)

Aggregate output exhibits constant (external) returns to scale in aggregate capital and

aggregate labour when firms are treated as a fixed factor.19 Aggregate total factor

productivity (TFP) measures aggregate output that is not accounted for by aggregate

capital and aggregate labour. It includes labour utilized for production ut and over-

heads 1− ut, as well as two sources of returns to scale, φ and ν, and the capital share

in variable costs α. TFP is not the Solow residual because the exponents of aggre-

gate capital and labour do not correspond to aggregate factor shares.20 It is helpful to

decompose TFP into allocative efficiency and technical efficiency:

T FPt = Ωt︸︷︷︸
allocative

× Ât︸︷︷︸
technical

. (40)

We define Ât as technical efficiency, and we define allocative efficiency as:

Ωt ≡
(
Nt
Lt

)1−ν

︸   ︷︷   ︸
Scale effect

×
(
1−

Ntφ

Lt

)(1−α)ν

︸             ︷︷             ︸
Resource duplication

.

19To see this consider the sum of coefficients in the log differenced equation:

d lnYt = d lnTFPt +ανd lnKt + (1−αν)d lnLt .

20The term αν is the aggregate capital share in output multiplied by the markup αν = µ× rK/Y .
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Allocative efficiency captures the negative effect of more firms duplicating fixed costs,

and the scale effect of dividing aggregate labour among more firms, which will de-

pend on returns to scale in variable production ν R 1.21 Technical efficiency is the

generalised mean, conditional on being active, of exogenously drawn technology, and

hence it is determined by selection. Under Pareto distributed A(), technical efficiency

will be a linear function of the threshold productivity level A.

3.7.3 Scale Economies

What are scale economies in this model? The parameters ν and φ are both sources of

scale economies in the model. Scale economies are measured as the ratio of average

cost to marginal cost (the inverse cost elasticity) which is an endogenous object. In

this section, we show this from the production side by summing output elasticities.

The same result can be shown from the cost function.22

From equations (9) and (10), the response of firm output to a change in each vari-

able input is constant. Consequently, returns to scale in variable production is con-

stant:

∂ lnyt()
∂ lnkt()

= να,
∂ lnyt()
∂ ln`t()

= ν(1−α),
∂ lnyt()
∂ lnkt()

+
∂ lnyt()
∂ ln`t()

= ν.

The effect of a change in total labour input is decreasing in firm size:23

∂ lnyt()
∂ ln`tot

t ()
= ν(1−α)

(
1 +

φ

`t()

)
= ν(1−α) + (µ− ν)

(
At

A()

) 1
µ−ν

∈ (ν(1−α),µ−αν) .

21In the appendix we show how allocative efficiency is affected by the number of firms, when we as-
sume Pareto distributed A(). For ν < 1 there is a number of firms which maximizes allocative efficiency,
and for ν ≥ 1 allocative efficiency always falls in Nt , in which case a well-defined firm size relies on the
markup giving sufficiently downward-sloping demand.

22Savagar (2021) shows this for a model with output denominated fixed costs.

23For the second equality, we use the zero-profit condition
(
1− νµ

)
pt()yt() = wtφ

(
A()
At

) 1
µ−ν

combined

with labour demand wt
pt()yt()

= ν(1−α)
µ

1
`() to yield ν(1−α) φ

`t()
= (µ− ν)

(
At
A()

) 1
µ−ν

.
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Therefore, scale economies at the firm are decreasing in firm size:

St() ≡
∂ lnyt()
∂ lnkt()

+
∂ lnyt()
∂ ln`tott ()

= ν
(
1 + (1−α)

φ

`t()

)
= ν + (µ−ν)

(
At

A()

) 1
µ−ν

∈ (ν,µ) . (41)

To be more precise, a firm’s scale economies decrease as production labour rises rel-

ative to the labour overhead, or as firm productivity rises relative to the productivity

cut-off.

Figure 5 plots (41) for a given A. More productive firms have lower scale economies.

The cut-off firm has the highest level of scale equals to the markup, and scale con-

verges on returns to scale in variable inputs ν for high-productivity firms.

Figure 5: Firm-level Scale Economies in Steady-State

A

µ

ν
S()

A()

S
(

)

Plot shows equation (41) scale of a firm given its productivity draw. In the shaded region firms are
inactive and the dashed line shows their hypothetical scale economies if they were to produce. The
horizontal lines show the bounds on scale economies of active firms S() ∈ (ν,µ). We have assumed A()
is Pareto distribution and we have set A arbitrarily.

3.8 Model with Pareto Distribution

We assume that the technology variable is Pareto distributed. Given a random variable

 drawn from the uniform distribution on the unit interval [0,1), then the productivity
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variable A() given by the quantile function:

A() =
h

(1− )
1
ϑ

. (42)

The parameter ϑ > 1 is the Pareto shape parameter and h is the scale parameter,

which is the lowest value of technology, corresponding to  = 0. We set h = 1. A

thicker-tailed Pareto distribution occurs as ϑ → 1, which implies a higher density of

high-productivity draws and a lower density of low-productivity draws. A thinner-

tailed Pareto distribution occurs as ϑ → ∞ which implies a lower density of high-

productivity draws and a higher likelihood of low-productivity draws.

Under Pareto, the power mean of technology is:

Ât =
(
ϑ(µ− ν)

ϑ(µ− ν)− 1

)µ−ν
At = ΓAt where Γ ≡

(
ϑ(µ− ν)

ϑ(µ− ν)− 1

)µ−ν
. (43)

The constant Γ is the unconditional expectation of scaled technology A()
1
µ−ν . If the

cutoff took its minimum value At = 1, such that all participants were active and there

was no selection Jt = 0, this represents the average technology that would arise. To en-

sure that scaled technology A()
1
µ−ν has a finite expectation, we require that the scaled

Pareto shape parameter satisfies the following assumption.

ϑ(µ− ν) > 1. (44)

This limits the degree of fat tails in the technology distribution. The assumption is

analogous to the assumption ϑ > 1 for the Pareto distributed technology before it is

scaled.

3.8.1 Equilibrium Conditions with Pareto Distribution

Given the constant ratio between the power mean of technology and cut-off technology

in equation (43), several equilibrium conditions simplify. Labour utilized for produc-

tion is constant, aggregate TFP is a linear function of cut-off technology, and wage is a
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log-linear function of cut-off technology:

u =
(
1 +

ϑ(µ− ν)− 1
νϑ(1−α)

)−1

1−u =
ϑ(µ− ν)− 1
ϑ(µ−αν)− 1

(45)

T FPt = ΩÂt, where Ω ≡
(

1−u
φ

)1−ν
u(1−α)ν and Ât = ΓAt (46)

wt =
κ
φ

[ϑ(µ− ν)− 1]Aϑ
t . (47)

The final equation determines the wage from the free entry condition. The lowest

value At can take is 1 which is the lowest productivity draw corresponding to J = 0.

The constant u implies that total production labour is always a fixed portion of ag-

gregate labour as an economy transitions over time.24 Labour utilized for production

is invariant to the fixed cost, increasing in returns to scale in variable inputs and de-

creasing in the markup:

du
dφ

= 0
du
dν

=
(1−α)ϑ(ϑµ− 1)
(ϑ(µ−αν)− 1)2 > 0

du
dµ

= − (1−α)ϑ2ν

(ϑ(µ−αν)− 1)2 < 0 (48)

The constant u implies that the number of active firms is constant

N =
1−u
φ

=
1
φ

ϑ(µ− ν)− 1
ϑ(µ−αν)− 1

. (49)

Therefore, we can characterise the number of active firms as decreasing in the fixed

cost and returns to scale in variable inputs, and increasing in the markup:

dN
dφ

= −N
φ
< 0

dN
dν

= − 1
φ
du
dν

< 0
dN
dµ

=
1
φ
du
dµ

> 0. (50)

Both sources of scale economies φ and ν reduce the number of firms as they increase.

As the marginal cost curve becomes flatter ν < 1, horizontal ν = 1 and downward

sloping ν > 1, optimal firm size (MR=MC) increases, and more total labour goes to-

ward production (i.e. u rises). With larger firms the number of firms declines. For

24In the appendix we provide a diagram to illustrate that this occurs because entry Et and proportion
of active Jt firms adjust over time to keep N fixed.
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a rise in the fixed cost φ, the fraction of production labour in aggregate labour does

not change, consequently the number of firms must fall so that the fraction of total

fixed costs in labour also remains unchanged. Unlike the decline inN from rising ν or

φ, an increase in the markup raises the number of firms. This is because with higher

markups, due to greater product differentiation (i.e. more steeply downward slop-

ing demand curves), firms restrict their output more. This leads to the well-studied

result that there is excessive entry of ‘small’ firms under monopolistic competition

(Dixit and Stiglitz (1977) and Mankiw and Whinston (1986)). Finally, an implication

of constant u andN is that the aggregate labour sharewtLt/Yt is constant with a Pareto

distribution, where Lt = 1 we have

w
Y

=
1
µ

(
µ−αν − 1

ϑ

)
. (51)

The labour share is increasing in the markup, and decreasing in returns to scale in

variable inputs and invariant to the fixed cost. The remaining model equations are

unchanged:

Yt −Ct = Kt+1 − (1− δ)Kt(
Ct+1

Ct

)σ
= β [rt+1 + (1− δ)]

Yt = TFPtK
αν
t

rt =
ν
µ
α
Yt
Kt

wt =
ν
µ

(1−α)
Yt
u

Therefore, we have reduced the model to seven equations in seven variables Ct,Kt,Yt,

rt,wt,T FPt,At, and u is a constant. In the reduced model there is no individual firm

heterogeneity . The model is an economy of homogeneous firms, each endowed with

the power mean of technology Ât, which captures all heterogeneity. We can further

reduce the equilibrium conditions to two dynamic equations in two variables {Ct,Kt}.
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First, if we equate wages and substitute out Yt, we get At as a function of Kt:25

At = ΨK
αν
ϑ−1
t , where Ψ ≡

(
φ

κ [ϑ(µ− ν)− 1]
(1−α)

ν
µ
ΩΓ

u

) 1
ϑ−1

. (52)

In turn, TFP, wage, rental rate and aggregate output are functions of capital:

T FPt = ΩΓΨK
αν
ϑ−1
t (53)

wt =
κ
φ

[ϑ(µ− ν)− 1]Ψ ϑK
ανϑ
ϑ−1
t (54)

rt = α
ν
µ
ΩΓΨK

ανϑ
ϑ−1−1
t (55)

Yt = ΩΓΨK
ανϑ
ϑ−1
t . (56)

Finally, substituting in the rental rate and aggregate output into the two dynamic

equations reduces to a dynamic system in {Kt,Ct}:

ΩΓΨK
ανϑ
ϑ−1
t −Ct = Kt+1 − (1− δ)Kt (57)(
Ct+1

Ct

)σ
= β

[
α
ν
µ
ΩΓΨK

ανϑ
ϑ−1−1
t+1 + (1− δ)

]
. (58)

Threshold technology, TFP, wage and aggregate output are increasing in aggregate

capital. The rental rate is ambiguously related to capital:

d lnrt
d lnKt

=
1−ϑ(1−αν)

ϑ − 1
R 0 ⇐⇒ 1−ϑ(1−αν) R 0.

25Equating wages with Yt substituted out yields

(1−α)
ν
µ

ΩΓAtK
αν
t

u
=
κ
φ

[ϑ(µ− ν)− 1]Aϕ
t .

For a given level of capital, At adjusts such that the wage markets equate. This relationship gives the
intuition for why an increase in capital increases selection. We begin with capital as it is a state variable,
determined directly in steady state. From the left-hand wage equation, an increase in capital increases
the wage given At on the left held constant. On the right, which represents wage from the free entry
condition, At must increase – since ϑ > 1, increasing At on the right-hand side has a stronger wage
enhancing effect than increasing At on the left-hand side. To summarise, an increase in K , increase w
in the factor market equilibrium, therefore At must increase to raise wage in the free entry condition
(i.e. a higher wage means only more productive firms survive). We can think of this relationship as
two wage curves lnw = lnA and lnw = ϑ lnA, since ϑ > 1 wage is more sensitive to selection in the free
entry condition than in the factor market condition.
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To understand this ambiguity, consider that rt = α νµYt/Kt. Since Yt = T FPtK
αν
t =

ΩΓΨK
αν
ϑ−1
t ×Kανt , therefore Yt/Kt = ΩΓΨK

αν
ϑ−1
t ×Kαν−1

t where αν −1 < 0 by assumption.

Heterogeneity ϑ matters through the T FPt component. If ϑ decreases, Pareto tails

become fatter and there is a greater density of high technology draws i.e. more het-

erogeneity. This strengthens the TFP response to aggregate capital, and consequently

aggregate output responds more to aggregate capital, such that aggregate output could

increase at an increasing rate in capital. If ϑ increases, Pareto tails become thinner and

there is a greater density of low technology draws i.e. no heterogeneity, TFP responds

less to capital, and rt will decrease in Kt. For the remainder of the paper, we impose

that the price of capital decreases in the quantity of aggregate capital, therefore:

1−ϑ(1−αν) < 0. (59)

Therefore, we have imposed two assumptions on the Pareto shape parameter. These

assumptions restrict the thickness of the Pareto tail, and are summarised in the next

assumption.

Assumption 2. The Pareto shape parameter must satisfy

1
ϑ
<min

{
µ− ν,1−αν

}
. (60)

This ensures that the scaled technology distribution is Pareto distributed with a

finite mean and the price of capital r is decreasing in aggregate capitalK . For example,

consider a markup of µ = 1.2, a constant marginal cost curve ν = 1, and a capital share

in variable costs of α = 0.25. Then, we require 1
ϑ < min{0.2,0.75}, so the Pareto shape

parameter must satisfy ϑ > 5.
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3.8.2 Steady-state with Pareto Distribution

In steady state the system satisfies Kt+1 = Kt = K and Ct+1 = Ct = C. This yields the

following steady-state solution for capital and consumption:

K =
[
ανΩΓΨ

µr

] ϑ−1
ϑ(1−αν)−1

(61)

C = K
( µr
αν
− δ

)
. (62)

where r = 1
β − (1 − δ). The remaining variables follow by substituting the expression

for K into the reduced model. In particular, solving for A yields:

A =
[
νν

1
µ

(α
r

)αν
(φ(1−α))ν(1−α)ϑµ−1(µ− ν)µ−ν

1
κ1−αν

1
(ϑ(µ− ν)− 1)µ−αν

] 1
ϑ(1−αν)−1

. (63)

This captures how the technology cut-off, which represents selection, responds to un-

derlying model parameters. An increase in A implies stronger selection and a decrease

in A implies weaker selection.26

The threshold technology is log linear in the entry cost κ and overhead costs φ.

They have opposite effects on threshold technology A. We can understand this through

the free entry condition which states that the constant entry cost equals to the expected

value of a firm. If κ increases, then the expected value of a firm must rise to be at

equality with κ. Given ϑ(1 − αν) − 1 > 0, a rise in expected profits will occur if the

survival threshold falls, so there is more chance of being active upon entry.

Higher φ increases expected profits because break-even firm size increases (this is

26The threshold productivity cannot be lower than the minimum productivity which we have nor-
malized to one (A ≥ Amin = 1). Therefore, we require that

1 ≤
[
νν

1
µ

(α
r

)αν
(φ(1−α))ν(1−α)ϑµ−1(µ− ν)µ−ν

1
κ1−αν

1
(ϑ(µ− ν)− 1)µ−αν

] 1
ϑ(1−αν)−1

.

Consequently, we can constrain the entry cost parameter such that it satisfies

κ ≤
[
νν

1
µ

(α
r

)αν
(φ(1−α))ν(1−α)ϑµ−1(µ− ν)µ−ν

1
(ϑ(µ− ν)− 1)µ−αν

] 1
1−αν

.

If κ satisfies this with equality, then A = 1 (and J = 0), therefore all entrants are active N = E.
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a ceteris paribus statement assuming the threshold does not adjust), then to offset this

increase in firm size and to reduce expected profits back to their equality with κ the

productivity cut-off must rise.

Ifφ increases, the threshold must rise because only more productive firms generate

sufficient revenue to cover the higher overhead costs.

4 Theoretical Analysis

Changes in aggregate productivity occur through an allocation component d lnΩ and

a technical efficiency component d ln Â:

d lnT FP = d lnΩ+ d ln Â

4.1 The Effect of Entry Cost on Aggregate Productivity

The entry cost κ does not affect allocative efficiency Ω, but affects technical efficiency

Â. If the entry cost increases, then technical efficiency decreases because the threshold

technology level falls, thus weakening selection.27 Selection weakens as the entry cost

increases because, by the free-entry condition, the expected value of the firm must

increase. The expected value increases if the threshold productivity declines.

4.2 The Effect of Fixed Costs on Aggregate Productivity

Changes in fixed costs affect aggregate TFP through an allocation component and a

technology component:
d lnT FP
d lnφ

=
d lnΩ

d lnφ
+
d ln Â
d lnφ

27Barseghyan and DiCecio (2011) Study this in a perfectly competitive economy, where the entry cost
is in terms of output κ/Y . They find empirical evidence that higher entry costs decrease aggregate TFP
across countries.
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Under Pareto, technical efficiency depends on the technology threshold A only since

the constant Γ is invariant to φ, therefore:

d ln Â
d lnφ

=
d lnΓ

d lnφ
+
d lnA
d lnφ

=
ν(1−α)

ϑ(1−αν)− 1
> 0.

The technology threshold is increasing in the overhead cost if ϑ(1−αν)−1 > 0. This is

the condition for the rental rate r to be decreasing in aggregate capital.

The allocation effect depends on the degree of returns to scale in variable produc-

tion:
d lnΩ

d lnφ
= −(1− ν).

The result is independent of the Pareto distribution assumption. We can interpret

the allocation effect through the number of firms. Note that Ω =
(

1−u
φ

)1−ν
u(1−α)ν =

N 1−νu(1−α)ν and u is independent of φ. An increase in φ, decreases the number of

active firms. With increasing returns (ν > 1), allocative efficiency is improved by hav-

ing fewer firms, as they benefit more from the increasing returns. On the other hand,

with decreasing returns (ν < 1), then having fewer firms is detrimental to allocative

efficiency, as the effect of decreasing returns is accentuated. Lastly, with constant re-

turns (ν = 1), the number of firms has no effect on allocative efficiency.

Combining the allocative and technical efficiency effects, shows that the response

of aggregate TFP to a change in fixed costs will depend on the level of returns to scale

in variable inputs ν.

d lnT FP
d lnφ

= −(1− ν) +
ν(1−α)

ϑ(1−αν)− 1
(64)

Figure 6 simulates equation (64) for different values of ν based on our benchmark

calibration (Table 1).
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Figure 6: Effect of φ on TFP for different ν

In Figure 7, we decompose the three cases from Figure 6.28 Technical efficiency

always rises as the fixed cost increases, while the allocative efficiency component is

determined by ν R 1, as previously discussed.

Figure 7: Effect of lnφ on TFP decomposed into Â and Ω for different ν

28The effect of φ on TFP is the same regardless of µ.
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4.3 The Effect of Returns to Scale on Aggregate Productivity

The nonlinearity of Equation (63) in ν makes it difficult to obtain a closed-form ex-

pression for the influence of ν on TFP. Therefore, we present simulations to illustrate

this effect.

Calibration

Table 1: Parameter Values for Comparative Statics

Parameter Value Target

β Discount rate 0.96 Real interest rate

δ Depreciation rate 0.08 Office for National Statistics

ν Variable RTS 0.99 - 1.05 ABS (authors’ estimates)

µ Markup 1.21 - 1.28 CMA (2022)

α Capital share 0.25 ABS (authors’ calculations)

ϑ Pareto shape 10 Hopenhayn (2014)

κ Entry cost 0.017 Model-implied maximum given range of ν,µ

φ Overhead cost 0.135 Match share inactive firms

The model is calibrated as in Table 1. We set the discount factor β to match the average

real interest rate of 2.08 percent over the period. To do this, we use the equation for

steady-state interest rate r = 1
β + 1 − δ.29 The depreciation rate δ is determined by a

weighted-average from ONS data. Our estimates of the returns to scale ν come from

our estimates of the production function using the estimation of Gandhi, Navarro, and

Rivers (2020). Markup estimates are from CMA (2022). They use a different dataset

and estimation strategy. The markup estimates are consistent with other studies that

show rising markups over this time period (ONS 2022; Hwang, Savagar, and Kariel

2022). In the model αν
µ is the capital share in revenue and (1−α)ν

µ is the production

labour share in revenue. Given our ν and µ estimates, we set α = 0.25 to match a

capital share of 20%.30

29Data on UK long-term government bond and inflation used to compute the real interest rate from
FRED database: IRLTLT01GBM156N and FPCPITOTLZGGBR.

30The ratio ν/µ is the revenue elasticity, which is typically set to 0.85 in US studies (Restuccia and
Rogerson 2008; Barseghyan and DiCecio 2011). Hopenhayn (2014) discusses this common calibration.
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Our theory imposes restrictions on the Pareto shape paramter ϑ. First, ϑ > 1
µ−ν

which ensures scaled productivity is Pareto distributed and the first moment exists,

and second, ϑ > 1
1−αν which ensures aggregate output is concave in aggregate capital,

so that the interest rate is decreasing in aggregate capital.31 Our calibrated markup

minus our estimated returns to scale µ − ν is between 0.198 and 0.234 from 2001 -

2014. Therefore, our restrictions imply that we must set ϑ > 5, similar to Hopenhayn

(2014) who sets the Pareto shape between 5 and 10. We set ϑ to this upper bound.

The entry cost parameter κ and the fixed cost parameter φmust satisfy restrictions

such that Jt ∈ (0,1). Then to calibrate these parameters at an empirically plausible

level, we target the κ/φw ratio. Barseghyan and DiCecio (2011) report a range of

values from industry studies. In most industries, the ratio is less than one, so entry

costs are less than overhead costs. The average they report is 0.82. Our experiments

vary ν,φ,µ parameters, so the entry-to-overhead cost ratio will vary as we change these

values, but the outcome always remains below 1.

Figure 8 shows the effect of ν on aggregate productivity for different values of the

markup µ. We observe that aggregate productivity rises unambiguously in ν in a low

markup economy, but not when the markup is higher. Both the level and the slope of

the relationship is falling in µ.

Our estimates for ν divided by our calibrated markup µ yield a ratio from 0.81 to 0.84 between 2001
and 2014.

31The first restriction implies that scaled technology, A()
1
µ−ν = (1 − )−

1
ϑ(µ−ν) , is Pareto distributed. In

some experiments, we take ν→ µ from below, and this requires us to raise the value of ϑ. The relevant
value for us is the scaled Pareto parameter ϑ(µ − ν), since labour is distributed proportionally to this
term.
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Figure 8: Effect of variable RTS on ln TFP for different levels of the markup

ln TFP for calibrated model for a range of ν and µ.

In Figure 9 we provide a decomposition into technical efficiency and allocative

efficiency for each of these markup cases. We observe that the weakening passthrough

of returns to scale to TFP occurs because of weakening technical efficiency (i.e. less

selection), and worsening allocative efficiency.

34



Figure 9: Effect of ν on TFP decomposed into Â and Ω for different µ

As returns to scale ν increase, technical efficiency Â increases. This implies stronger

selection of high A() firms. However, the effect is weaker as market power increases.

Hence, in high-markup economies, there is weaker selection of high productivity firms

as returns to scale increase.

Returns to scale ν have a U-shaped relationship with allocative efficiency. This

occurs because an increase in ν decreases the number of firms. With decreasing re-

turns (ν < 1), fewer firms harm allocative efficiency. However, with increasing returns

(ν > 1), fewer firms improve allocative efficiency. As market power increases, the min-

imum point moves right, causing a wider range of declining allocative efficiency. This

occurs because higher markups increase the number of firms. Hence, the benefits of

growing returns to scale for allocative efficiency are counteracted by higher markups,

reducing the size of firms and limiting their ability to benefit from increasing returns.
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5 Quantitative Application

In Section 4, we examined the impact on aggregate productivity of the parameters of

the production function that cause scale economies. We now analyse the quantitative

plausibility of scale economies alongside stagnating productivity, which has occured

in the US and UK in recent years. We find that changing returns to scale in variable

inputs alongside rising markups explains the data well.

5.1 Rising Returns to Scale

We calibrate the parameter ν to our annual estimates from 2001 to 2014, while the

parameter µ is set to annual estimates from CMA 2022. We set φ = 0.135 such that the

share of inactive firms is empirically plausible in our benchmark calibration.

Figure 10 compares the trends in TFP in the data and our model. It reveals a rise

in both series prior to the Financial Crisis, followed by a sharp decline in the data and

a more gradual decrease in the model. Fixing the markup to its 2001 value highlights

the significant impact of rising returns to scale on aggregate productivity. If market

power had remained constant, higher returns to scale would have boosted aggregate

productivity by over 20% between 2001 and 2014. However, when we incorporate the

simultaneous increase in markups and returns to scale, our estimated productivity

trend aligns more closely with observed data.
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Figure 10: TFP Growth: Model vs Data

We give the model estimates of µ and estimates of ν and solve in each year for steady-state to obtain
the model-implied TFP. The TFP data series is from the Penn World Table 10.01 (Feenstra, Inklaar, and
Timmer 2015), accessed from FRED: Total Factor Productivity at Constant National Prices for United
Kingdom (RTFPNAGBA632NRUG).

5.2 Rising Overhead Costs

The rise in both ν and µ in the UK explains aggregate productivity growth well. How-

ever, our empirical evidence shows that payments to administration costs as a share

of sales has increased for the median firm. We consider this data series as a proxy for

wtφ/Yt in the model.32

In Figure 11 we calibrate φ to match our estimates of this ratio. The results high-

light the opposing response of aggregate TFP conditional on the level of ν that we

discussed in our theoretical analysis. Therefore the level of returns to scale in variable

production is crucial for the implied effect of changing overhead costs. In our esti-

mates, ν is greater than one, which implies productivity should have risen 10% over

the period.

32Since changing φ has general equilibrium effects on wt and Yt , increasing this ratio does not nec-
essarily mean φ increases each period. This is relevant because our theoretical analysis focuses on
changing φ, not the ratio. However, in practice for our calibration, φ and the ratio move together.
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Figure 11: TFP Growth: Model (fixed ν and µ, with variable φ) vs Data

We fix µ to its 2001 level and calibrate φ to match the overhead share in BvD data. We solve the model
steady-state in each year to obtain the model-implied TFP. The TFP data series is from the Penn World
Table 10.01 (Feenstra, Inklaar, and Timmer 2015), accessed from FRED: Total Factor Productivity at
Constant National Prices for United Kingdom (RTFPNAGBA632NRUG).

In Figure 12, we also re-calibrate µ each year to match CMA (2022) estimates. In

this case, aggregate TFP growth underperforms TFP growth in the data, regardless

of returns to scale in variable production. Therefore, the markup effect dominates the

fixed cost effect and we do not observe opposing dynamics for productivity conditional

on ν R 1.
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Figure 12: TFP Growth: Model (fixed ν, with variable µ and φ) vs Data

We give the model estimates of µ and calibrate φ to match the overhead share in BvD data. We solve
the model steady state in each year to obtain the model-implied TFP. The TFP data series is from the
Penn World Table 10.01 (Feenstra, Inklaar, and Timmer 2015), accessed from FRED: Total Factor Pro-
ductivity at Constant National Prices for United Kingdom (RTFPNAGBA632NRUG).

6 Conclusion

In this paper, we analyse the relationship between firm-level scale economies and ag-

gregate productivity. First, we estimate that returns to scale in the UK have risen since

1998. Then we develop a theory to relate firm-level scale economies to aggregate pro-

ductivity. We clarify that scale economies can arise through fixed costs or returns to

scale in variable inputs. We show that these two sources of scale economies have dif-

ferent implications for aggregate productivity through their effect on firm selection

and allocation of resources to fixed costs. Finally, we simulate the model with our es-

timated series for returns to scale in variable inputs. This shows that, ceteris paribus,

higher scale should have raised aggregate productivity significantly. However, rising

markups in the UK offset this mechanism, and the combined impacts of higher scale

and higher market power can explain stagnant productivity growth in this period.
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Appendix

A Graphical Illustration of Scale Economies (Cost based)

It is helpful to consider the three types of cost curve scenarios faced by firms in our

model.

Figures 13, 14 and 15 show a firm’s cost curves for the case where there is a

fixed cost and increasing, constant or decreasing marginal costs. The diagrams show

average total cost (ATC), average variable cost (AVC), average fixed cost (AFC) and

marginal cost (MC) as firm output varies. Specifically, total cost is the sum variable

cost and a fixed cost: TC = VC + FC, and averages are the components when divided

by output y. The demand curve (p(y)) and marginal revenue (MR) curve (d p(y)y
dy ) are

not shown. We can imagine them as horizontal in the perfectly competitive case and

downward sloping with imperfect competition, for example, due to product differen-

tiation. The first case (Figure 13) allows for a perfectly competitive equilibrium when

the demand curve is horizontal and firms produce at minimum average cost. The sec-

ond and third cases (Figure 14 and 15) require imperfect competition. The demand

curve must be downward sloping for MR =MC to occur.

Figure 13 illustrates the cost curves of a firm with a fixed cost and increasing

marginal cost curve. The firm’s marginal cost intersects the average total cost at its

minimum. This minimum point is the firm’s minimum efficient scale (MES) which

would arise under perfect competition and at this minimum the firm has constant

scale. To the left-hand side of the MES the firm has economies of scale and to the

right-hand side the firm has diseconomies of scale.
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Figure 13: Fixed Cost with Increasing MC, U-Shaped AC Curve

Figure 14 has a constant marginal cost curve and a fixed cost, so there are globally

decreasing returns and ATC=MC in the limit. In this case there must be a down-

ward sloping demand curve for an equilibrium where MR =MC to exist. Any degree

of slope in the demand curve is sufficient to give an equilibrium, unlike in the next

example example which requires a sufficiently steep demand curve (or a sufficiently

shallow decreasing marginal cost).
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Figure 14: Fixed Cost with Constant MC, Globally Decreasing Returns

Figure 15 has a decreasing marginal cost and a fixed cost so there are global dis-

economies of scale. In this case there must be a downward sloping demand curve for

an equilibrium where MR =MC to exist. The demand curve must be steeper than the

downward-sloping marginal cost curve to ensure this occurs.
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Figure 15: Fixed Cost with Decreasing MC, Globally Decreasing Returns

B Graphical Explanation of Scale Economies (Produc-

tion based)

Figure 16 illustrates scale economies from the production side. It conveys the counter-

intuitive idea that small firms have high scale economies, whilst large firms have low

scale economies. The graph represents an economy where firm output is produced by

production labour. In order to produce there is some overhead labour that is the same

for both firms. Total labour is the sum of production labour and overhead labour. The

figure shows that a 10% rise in total labour at a firm raises production labour by 100%

for the small firm, but only 13% for the large firm. Therefore, a proportional change

in inputs has a larger effect on output for the small firm.
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Figure 16: Scale Economies for Large and Small Firm

C Pareto Distributed Productivity

We obtain a measure of productivity A() from a random draw on the unit interval

 ∈ [0,1] using inverse transform sampling. The Pareto CDF is given by

F(A;ϑ) = 1−
(
h
A

)ϑ
; A ≥ h > 0 and ϑ > 0.

If J ∼Unif orm(0,1], then for  ∈ J , we have

1−
(
h
A

)ϑ
= 

Therefore, the quantile function is

A() = h(1− )−
1
ϑ .

Typically we set the scale parameter, which is the minimum possible value of A, to

h = 1. Calibrations of the shape parameter (tail index) vary, for example ϑ = 1.15

in Barseghyan and DiCecio (2011) and ϑ = 1.06 in Luttmer (2007) and ϑ = 6.10 in

Asturias, Hur, T. J. Kehoe, and Ruhl (2022). These estimates are set to match the firm

size distribution in terms of employment since in these models A() is proportional to

48



employment, though, as below, scaling can affect this.
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Figure 17: Productivity with Pareto Distribution, h = 1,ϑ = {1.06,1.15}. Domain  ∈
(0 : 0.97)

Figure 18 plots scaled technologyA()
1
µ−ν for different calibrations of ν = {0.95,1.00,1.05}

given fixed values of µ = 1.1 and ϑ = 50. The Pareto shape parameter must be large

such that (µ−ν)ϑ > 1. The distribution of scaled technology is proportional to the dis-

tribution of labour, capital and revenue. We require (µ− ν)ϑ > 1 so that the expected

value of scaled technology is finite, and consequently the expected value of labour per

firm, capital per firm and revenue per firm is not infinite.

We observe that a higher ν leads to a greater scaled technology for any given  draw.

Since a higher ν decreases the tail index for scaled technology, it causes a lower density

of firms to have low-productivity draws and a greater density of firms to have high-

productivity draws. Therefore, it thickens the tail of the probability density function.

Since employment, capital, and revenue are proportional to this, it also means the

distribution of firms is denser towards large firms in terms of labour, capital and em-

ployment, and with a lower density of small firms.
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Figure 18: Scaled Technology with Pareto Distribution, h = 1,ϑ = 50 and µ = 1.1, ν =
{0.95,1.00,1.05}. Domain  ∈ (0 : 0.95).

D Additional Model Derivations

D.1 Profit Maximization Problem

First-Order Conditions

We drop time subscripts t and firm-specific notation . Fixed parameters are {ν,µ,α,φ}

and endogenous variables are {N,Y ,A,k,`, r,w}. The revenue function is

py =N
1−µ
µ Y

µ−1
µ y

1
µ =N

1−µ
µ Y

µ−1
µ A

1
µk

αν
µ `

(1−α)ν
µ .

The variables {N,Y ,A,w,r} are taken as given by the firm. The firm maximizes revenue

less costs:

max
k,`

p(k,`)y(k,`)− rk −w(` +φ).

The first-order conditions of the maximization problem state that the marginal rev-

enue product of labour (MRPL) and marginal revenue product of capital (MRPK) – i.e.

the revenue derivatives with respect to labour and capital – equal to wage and rental
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rate at optimal choices:

MRPL =
ν(1−α)

µ

p(k∗, `∗)y(k∗, `∗)
`∗

= w

MRPK =
να
µ

p(k∗, `∗)y(k∗, `∗)
k∗

= r.

Since 0 < α < 1, µ ≥ 1, ν > 0 the marginal revenue products are positive. Asterisk

notation denotes the profit-maximizing levels of capital and labour.

Second-Order Conditions

The second-order conditions for maximization require that, at the optimal point {k∗, `∗},

the objective function is decreasing in capital and labour and the determinant of

the Hessian of the objective function is positive. This implies that MRPL` < 0 and

MRPKk < 0 where subscripts denote derivatives. And, MRPL`MRPKk −MRPL2
k > 0.

First note:

MRPLk =MRPK` =
να
µ
MRP L
k∗

=
ν(1−α)

µ
MRPK
`∗

.

Therefore the following conditions must be satisfied:

MRPL` =
(
ν(1−α)

µ
− 1

)
MRPL
`∗

< 0

MRPKk =
(
να
µ
− 1

)
MRPK
k∗

< 0

MRPL`MRPKk −MRPL2
k =

MRPL×MRPK
k∗`∗

(
1− ν

µ

)
> 0

These conditions hold if ν < µ.

D.2 Reduced-form Aggregate Output

We can show that aggregate output reduces to a Cobb-Douglas function of capital and

labour scaled by a power mean measure of technology.

Yt =Nt

[
1
Nt

∫ Nt

0
yt(ı)

1
µdı

]µ
=Nt

[
Et
Nt

∫ 1

Jt

yt()
1
µd

]µ
=Nt

[
1

1− Jt

∫ 1

Jt

yt()
1
µd

]µ
(65)
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Next, we use the technique of expressing firm-level variables relative to the threshold

firm variable, which in turn can be summarised by relative productivity. Here, we re-

write as the ratio of firm output yt() to threshold firm output yt(Jt), where threshold

firm output is a constant over :

Yt =Ntyt(Jt)

 1
1− Jt

∫ 1

Jt

[
yt()
yt(Jt)

] 1
µ

d


µ

(66)

Use the result that [
yt()
yt(Jt)

] 1
µ

=
pt()yt()
pt(Jt)yt(Jt)

=
(
A()
At

) 1
µ−ν

(67)

Hence

Yt =Ntyt(Jt)

 1
1− Jt

∫ 1

Jt

(
A()
At

) 1
µ−ν

d


µ

=Ntyt(Jt)
(
Ât
At

) µ
µ−ν

(68)

This shows that aggregate output depends on the number of active firms, the size

of the threshold firm and the ratio of average technology to threshold technology.33

Substituting in yt(Jt) = At

[
kt(Jt)α`t(Jt)1−α

]ν
yields:

Yt =NtÂ
µ
µ−ν
t A

−ν
µ−ν
t

[
kt(Jt)

α`t(Jt)
1−α

]ν
(69)

The next step again applies the technique of representing firm-level variables rel-

ative to the the threshold-firm. This allows us to replace kt(Jt) and `t(Jt) in terms of

aggregates.

Kt = Et

∫ 1

Jt

kt() d =
Nt

1− Jt

∫ 1

Jt

kt() d =
Ntkt(Jt)

1− Jt

∫ 1

Jt

kt()
kt(Jt)

d (70)

=
Ntkt(Jt)

1− Jt

∫ 1

Jt

(
At()
At

) 1
µ−ν

d =Ntkt(Jt)
(
Ât
At

) 1
µ−ν

(71)

Lt = Et

∫ 1

Jt

`t() +φ d =
Nt

1− Jt

∫ 1

Jt

`t() +φ d =
Nt`t(Jt)

1− Jt

∫ 1

Jt

`t()
`t(Jt)

+
φ

`t(Jt)
d (72)

=
Nt`t(Jt)

1− Jt

∫ 1

Jt

(
At()
At

) 1
µ−ν

+
φ

`t(Jt)
d =Nt`t(Jt)

(
Ât
At

) 1
µ−ν

+Ntφ (73)

33Gao and Kehrig (2021) present an analogous result for the partial equilibrium case with perfect
competition (µ = 1) and no external returns to scale (love of variety).
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Therefore we can express threshold firm capital and labour as

k(Jt) =
(

At

Ât

) 1
µ−ν Kt

Nt
(74)

`(Jt) =
(

At

Ât

) 1
µ−ν utLt

Nt
, where ut ≡ 1−

Ntφ

Lt
. (75)

Finally, substituting these two expressions into our reduced-form expression for out-

put yields:

Yt =N 1−ν
t Ât

[
Kαt (utLt)

1−α]ν . (76)

E Fixed Cost Share Data

We use the administration expenses share in turnover to proxy the fixed cost share for

UK firms. Figure 4 shows the median administration expenses share in turnover for

UK firms from 2004 to 2023.

Administrative Expenses

In UK company accounts, ‘Administrative Expenses’ are defined as expenses an orga-

nization incurs that are not directly related to a specific function such as manufac-

turing, production, or sales. These expenses can include things like: rent, utilities,

insurance, wages and benefits for administrative staff, depreciation on office furniture

and equipment, professional fees (e.g., accounting and legal fees), and travel expenses.

They are necessary for the day-to-day operation of a business, but they do not directly

contribute to the generation of revenue. Expenses related to the generation of revenue

fall under cost of goods sold (COGs). Administration expenses are typically reported

on a company’s income statement, below the cost of goods sold (COGS) line.
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FAME data

We use the Bureau van Dijk FAME dataset, a UK version of Orbis, to obtain firm fi-

nancial information. The dataset records the annual financial statements of all incor-

porated companies in the UK. Over the entire period, there are 16,426,460 company

entries. We restrict our analysis to companies that have at least one entry in adminis-

tration expenses for any year between 2004 and 2023. The company does not need to

be active today; it could have dissolved. This restriction reduces the number of compa-

nies to 680,763. The companies removed in this step have no administration expenses

recorded over the sample period. This occurs because smaller companies can sub-

mit micro-entity accounts which do not include this information. Medium and large

companies submit ‘full accounts’ which do record this information. Due to download

restrictions, we take a random sample of 250,000 companies, and we keep this same

sample of firms every year. Since a firm only needs to have an administration expense

in one year, there will be many blanks in any given year for any given company, either

because it is inactive or because administration expenses were not recorded because it

is a micro-entity. In the end, there are approximately 50,000 firms each year that have

an entry in both administration expenses and turnover.

F ARD Data

We use the Annual Respondents Database (ARD) or the time-series version known as

ARDx. The ARD is based on the Annual Business Survey (ABS). The ABS is an annual

survey of firms in the UK economy. It is a core ONS product used in the construction

of national accounts. The ARD adds information from other business surveys to the

ABS data.34 Firms are legally obligated to respond to the survey. The survey forms a

firm-level panel that covers all large firms and a representative sample of small firms

by geography, size and sector. Large firms are surveyed annually, while small firms are

surveyed for a fixed number of years. The ARDx Methodology and ABS Methodology

34Specifically, the ARD brings together the ABS and the Business Register and Employment Survey
(BRES), and prior to 2009 it brought together the two parts of the Annual Business Inquiry (ABI).
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provide more detail.

F.1 Capital Construction

The Perpetual Inventory Method (PIM) allows the construction of firm-level capital

stocks when such data are unavailable, but investment data is present. The method

here follows Martin (2002) and Hwang, Savagar, and Kariel (2022). The PIM is con-

structed using the following equation:

Kt = (1− δ)Kt−1 + It.

Kt is the capital stock in period t, and It is investment in period t. However, to use

this method, we need K0 – the initial capital stock of a company, which is not in this

survey. To construct this series, each firm’s K0 is a revenue-weighted share of the

industry-level capital stock in the first year that firm appears in the panel. The capital

stock is then constructed for all future years with the above equation, with the missing

investment data interpolated. The depreciation rate is taken to be 18.195%, which

is a weighted average of the ONS depreciation rates for the three different capital

categories: Building, Vehicles, Other.

F.2 Deflating

We convert firm gross output and value added into real values using the ONS industry

deflators. Material inputs are deflated with the ONS producer price inflation data. The

capital stock is deflated with the ONS gross fixed capital formation deflator.

F.3 Cleaning

For the purpose of our production function estimation, we exclude sectors: Agricul-

ture, Public Sector, Finance & Insurance, Education, and Health. Standard Industrial

Classification (SIC) 2007 codes: A, K, O, P, Q. These sectors were excluded from the

survey after 2012. K,O,P were fully excluded and A,Q had various subsectors ex-
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cluded. We set out rules for SIC re-coding to ensure compatibility pre- and post-2007,

when the classification is changed. For SIC codes post-2007, we divide the number by

1000 to match with pre-2007 codes. To avoid outliers, which may represent record-

ing errors in the surveys, we winsorize firms with the top and bottom 0.1% of factor

shares in revenue (M/Y , K/Y , L/Y ) in each year. Table 2 contains number of firms at

each stage of the data cleaning process, along with the final number of observations

for estimation.

Table 2: Data Cleaning: Firms Dropped

# Firms

All ARD firm-year obs 854,732

Drop if no 2-digit sector 852,424

Drop if < 100 firms in sector 852,331

Drop sectors A,K,O,P,Q 761,348

Take logs of regression variables 539,368

Drop outlier factor shares 527,813

F.4 Summary Statistics

Table 3 presents aggregate descriptive statistics of the variables used in our regression

analysis.

Table 3: Descriptive Statistics of Regression Variables for Full Sample

Mean SD p10 p50 p90 No. Obs

Revenue 39,736 675,183 92 1,458 42,797 527,813
Labour 224 2,213 2 20 349 527,813
Capital 7,696 150,007 22 351 7,915 527,813
Materials 29,651 636,176 32 703 26,255 527,813
Materials Share 0.55 - 0.17 0.58 0.87 527,813
Labour Share 0.26 - 0.04 0.23 0.52 527,813
Capital Share 0.27 - 0.06 0.19 0.60 527,813

Table 4 presents descriptive statistics by broad industry group.
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Table 4: Descriptive Statistics of Regression Variables by Broad Sector

Mean SD p10 p50 p90 No. Obs

Manufacturing
Revenue 36,005 235,437 336 4,294 58,896 125,737
Labour 192 576 8 54 431 125,737
Capital 10,362 75,776 148 1,498 16,154 125,737
Materials 24,954 178,528 122 2,400 38,999 125,737
Materials Share 0.57 - 0.30 0.58 0.81 125,737
Labour Share 0.28 - 0.11 0.27 0.47 125,737

Construction
Revenue 17,812 108,789 111 1,414 48,782 51,784
Labour 103 395 2 11 214 51,784
Capital 2,309 41,523 11 104 2,210 51,784
Materials 12,467 89,027 18 343 16,896 51,784
Materials Share 0.51 - 0.17 0.52 0.81 51,784
Labour Share 0.25 - 0.00 0.24 0.49 51,784

Trade, Wholesale, Transport
Revenue 62,673 1,102,305 111 1,414 48,782 182,814
Labour 256 3,404 2 14 244 182,814
Capital 7,092 103,075 20 245 5,667 182,814
Materials 52,666 1,044,112 61 929 26,219 182,814
Materials Share 0.69 - 0.37 0.74 0.92 182,814
Labour Share 0.16 - 0.02 0.13 0.35 182,814

Services
Revenue 25,276 284,335 65 728 28,673 179,028
Labour 249 1,627 2 17 403 179,028
Capital 8,821 228,905 20 218 5,435 179,028
Materials 14,417 209,297 15 242 11,263 179,028
Materials Share 0.41 - 0.09 0.38 0.77 179,028
Labour Share 0.34 - 0.06 0.32 0.68 179,028
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