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Which firms are using automation technologies, and what are the ef-
fects on firms and the aggregate economy? Using Italian survey data
on adoption of cutting-edge technologies, such as Artificial Intelligence,
I compile a set of novel findings. Firms that automate are larger, pay
higher wages, and are more productive. Technology adopters grow
faster once they start using automation technologies. I embed technol-
ogy adoption in a heterogeneous firm model to investigate the aggre-
gate implications of automation. The model reconciles the firm-level ev-
idence of technology adoption boosting firm size, with the various macro
studies suggesting a negative overall effect on employment.
JEL: D22, J23, J24, L11, O14.
Keywords: Automation, Firm Dynamics, Employment, Technology, Pro-
ductivity.

A recent wave of research has considered the impact of automation technologies,
which can perform tasks that - until recently - were limited to the domain of human
labour. The sharp increase in the capability and spread of automation technologies has
been widely discussed and studied (Acemoglu and Restrepo, 2018b; Acemoglu, Lelarge
and Restrepo, 2020; Atalay et al., 2018; Dechezleprêtre et al., 2020). Adoption of au-
tomation technologies is growing quickly. Robots are an established automation tech-
nology, and the growth rate of the global stock of robots has been rising rapidly, from
around 4% in 2010 to over 15% in 2017 (International Federation of Robotics, 2014).
The increased interest and use of Artificial Intelligence has been startling. For exam-
ple, Fujii and Managi (2018) found the global number of AI-related patents had tripled
from 2012 to 2016. However, most of the empirical analysis on such technologies has
taken place at a macro level. For example, studies of how national robot adoption has
impacted labour markets are quite commonplace (Graetz and Michaels, 2018; Acemoglu
and Restrepo, 2020; Kariel, 2021).

This paper fills a noticeable gap in the literature by studying the adoption of automa-
tion technologies across firms. This research has both empirical and theoretical compo-
nents. Firstly, I use a unique panel dataset of Italian firms to look at the heterogeneity
in adoption, and the impact, of new automation technologies. This data has five main
advantages over many existing studies on automation among firms (Kwon and Stone-
man, 1995; Bartel, Ichniowski and Shaw, 2007; Dinlersoz and Wolf, 2018; Kromann and
Sorensen, 2019; Benmelech and Zator, 2022; Acemoglu, Lelarge and Restrepo, 2020):
(1) it includes a wide range of cutting-edge automation technologies, (2) there is infor-
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mation on when firms begin automating, (3) the data is from recent years, (4) the firms
comprise a panel, and (5) there is a large sample of around 5,000 firms.

The evidence suggests that automation-adopting firms are already larger and more
productive, but also benefit significantly once they adopt. The static results suggest au-
tomating firms are larger, pay higher wages, and are more productive. Taking a dynamic
perspective, I find that these firms have higher growth rates. Finally, I find that firms
grow faster once they become automaters.

There is concern that automation will disrupt labour markets, replacing the work of
many across a variety of industries and occupations (Susskind and Susskind, 2015). It
seems that this has already happened in some contexts, with the most widely-studied
automation technology to date: robots. There is growing evidence that, on aggregate,
the adoption of robots has led to a fall in total employment (Acemoglu and Restrepo,
2020; Chiacchio, Petropoulos and Pichler, 2018; Carbonero, Ernst and Weber, 2020).
How can we reconcile this with my findings that firms using automation technologies
get larger after adoption? I take a standard firm dynamics model and introduce two sim-
ple extensions: (1) firms hire routine and non-routine labour, with adjustment costs, and
(2) firms can invest in automation technology which can perform the tasks of routine
workers. The model replicates many of my empirical findings, and crucially it shows
that while automating firms may grow, aggregate employment can shrink. It is the equi-
librium effect that is crucial: automating firms expand, prices fall, and low-productivity
firms exit.

The model allows me to highlight the effects of automation with heterogeneous firms.
It can be used to understand what automation among incumbents means for competition,
aggregate productivity, the rate at which startups enter and at which firms shut down.

As highlighted in Seamans and Raj (2018), economists “lack an understanding about
how and when robotics and AI contribute to firm-level productivity, the conditions under
which robotics and AI complement or substitute for labor, how these technologies affect
new firm formation, and how they shape regional economies.” This has been primarily
due to a lack of available data on technological adoption at the firm level.

A number of recent studies have attempted to respond to this problem, utilising firm-
level automation data from the USA (Dinlersoz and Wolf, 2018), Denmark (Kromann
and Sorensen, 2019; Humlum, 2019), Germany (Benmelech and Zator, 2022), China
(Cheng et al., 2019), Spain (Koch, Manuylov and Smolka, 2019), Canada (Dixon, Hong
and Wu, 2020), and the EU (Jager et al., 2015). However each study has its limitations,
either the time period of analysis, the variety of automation technologies, or a small
sample of firms.

The closest empirical paper to this is Zolas et al. (2020), which investigates U.S. firms
and finds that adopters of advanced technologies tend to be larger and older. Furthermore,
they show that while digitisation (such as Cloud Computing) is quite widespread, the
adoption of more advanced technologies (such as Artificial Intelligence) is rare. Finally,
they find a hierarchy of technological adoption, such that firms using the more advanced
technologies also tend to use the more commonly adopted innovations. The results in
this paper align with the majority of their findings.
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I use the Bank of Italy’s “Survey of Industrial and Service Firms” firm-level automa-
tion data to investigate the relationship between automation, productivity, firm dynamics
and employment. This survey has been conducted over a long time, for a large sample
of firms, asking a wide range of automation-related questions, including recent questions
on “Industry 4.0”. For example, it asks about the use of Artificial Intelligence (AI), the
Internet of Things (IoT), and Industrial Robotics. This survey has approximately 5,000
firms in the panel, and has been run from 1984 to the present. It is an excellent dataset to
examine which firms automate, how this has changed over time, and the impact of these
choices.

My results are consistent with this nascent field of research on firm-level adoption of
automation technologies. For example, firms that automate tend to be larger (Benmelech
and Zator, 2022; Bartelsman, Van Leeuwen and Nieuwenhuijsen, 1998; Koch, Manuylov
and Smolka, 2019; Cheng et al., 2019; Acemoglu, Lelarge and Restrepo, 2020; Dixon,
Hong and Wu, 2020). Likewise, I find that such firms are 2 - 6% larger, even when ac-
counting for firm age, sector, and region. I also find that firms that automate are more pro-
ductive, with estimated TFP around 3% higher. Other studies have also found this pos-
itive relationship between automation and productivity, although often focusing only on
robots or manufacturing (Dinlersoz and Wolf, 2018; Kromann and Sorensen, 2019; Ben-
melech and Zator, 2022; Bartelsman, Van Leeuwen and Nieuwenhuijsen, 1998; Kwon
and Stoneman, 1995; Koch, Manuylov and Smolka, 2019).

I find that technology adopters grow faster than non-adopters, but there is little ev-
idence of this difference for blue-collar employment. This suggests that some workers
benefit from these technologies, but it varies across different skills and industries (Dixon,
Hong and Wu, 2020; Kariel, 2021; Dauth et al., 2021). By focusing on the impact on
adoption, I continue to find significant overall employment effects, suggesting the con-
tribution of selection effects is muted. Again, there seems to be a limited impact on
unskilled workers and productivity (apart for firms using robotics). In order to fully
understand what happens to firms on adoption of technologies, I conduct event studies
which show a considerable boost in employment from automation technologies, in the
range of 4 - 11% five years after adoption.

A model of automation is introduced, extending the Hopenhayn (1992) framework.
This is a workhorse model of industry dynamics which lends itself to questions about the
size distribution of firms, entry and exit behaviours, and the impact of policies (e.g. a
robot tax). Automation is built into the production function through a task-based frame-
work (Acemoglu and Restrepo, 2018b), where such technology can displace routine
workers, but complements non-routine labour. The calibrated model produces predic-
tions about the effect of automation, and can then be compared to the data.

A recent paper from Hubmer and Restrepo (2021) similarly embeds automation in a
standard firm dynamics model, with a fixed cost to automation, to investigate long-run
shifts in the U.S. labour share and the role of endogenous markups to study reallocation.
They find that substitution of labour for machines has played an important role in the
falling manufacturing labour share.

The paper is organised as follows. Section I introduces the data, presents results on
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firm dynamics, and summarises findings on automation adoption and investment. Sec-
tion II focuses on the firms that automate. I investigate their growth and productivity
rates, and look at the causal impact of adopting automation technologies. The model is
described in Section III, along with the calibration and results.

I. Data

The data comes from a survey of Italian firms, which I describe in this section. The
reason for using this survey is threefold: it samples a large number of representative
firms; most firms stay in the survey allowing for panel analysis; questions on automation
technology adoption are asked regularly.

This section introduces the data and summarises the findings on automation adoption.
I present new evidence on technology adoption and investment across firm distributions.
A consistent finding is that adopters of automation technologies tend to be larger, but do
not systematically vary by age.

A. Bank of Italy Survey

The data is from the Bank of Italy “Survey of Industrial and Service Firms” (Banca
d’Italia, 2021). This survey asks a wide range of questions from a representative sample
of around 5,000 firms with at least 20 employees. From 2001 and 2002 respectively, the
survey has included smaller businesses and services firms, to better represent the Italian
firm population. Firms in the survey are always contacted to be included in the next year,
but may not be included in the sample if they switch sector or fall below the threshold
size.

The survey uses a one-stage stratified sample design. The strata are selected according
to sector, size (average annual number of employees), and region of head office. Firm-
year weights are computed with Horvitz-Thompson estimators, and post-stratification
adjusted weights are computed using outside information of certain geographic charac-
teristics. Further details on the survey design can be found in Appendix A.

The survey collects annual data on firm employment, investment, turnover, and other
structural information. It also has further detail on specific issues, which may not be
asked annually, such as strategies, governance, and technological factors. Firms were
asked questions on automation technologies from 2015 - 2019. In odd years, they are
asked about the use of distinct technologies which have the potential to replace labour
inputs across some tasks. Firms give a binary response on the current use of each tech-
nology, alongside the number of years since adoption (in 2015 and 2017). These tech-
nologies are: Cloud Computing, Artificial Intelligence (AI), Big Data, the Internet of
Things (IoT), Industrial Robotics, and 3D Printing. From 2016 - 2019, firms are asked
the share of total investment which was spent on advanced digital technologies.

Information on the adoption of various technologies was collected in 2015, 2017, and
2019, with approximately 3,400, 3,800, and 2,100 firms responding in each year, respec-
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tively.1 The number of firms adopting each technology in each year can be found in
Appendix C.

B. Automation Technologies

Firms using automation technologies are larger, but adoption is less strongly associated
with age. Firm technology adoption varies across the technologies, both in terms of
sectors (e.g. Robotics is more common in manufacturing, while Cloud Computing is
adopted in services) and firm characteristics (such as age and size). I estimate firm-
level productivity differences between automaters and non-automaters, finding that firms
using these technologies are more productive.

Automation technologies are adopted by around one third of firms, but these businesses
employ a significantly larger proportion of workers. The most-used advanced technology
is Cloud Computing (21% of firms in 2017, and 28% in 2019). The other technologies
are adopted by a smaller share of firms: the Internet of Things (13 - 16%), 3D Printing
(5 - 11%), Industrial Robots (7 - 15%), AI and Big Data (9 - 13%).

Overall, firms adopting any of these automation technologies take up a much larger
share of employment: in 2015, 30% are adopters, employing 43% of workers. This rises
to 33% of firms and 51% of employees in 2017, followed by 37% of businesses and
56% of labour in 2019. The graphs in Figure 1 split this relationship by each technology
in 2019. The light blue bars show the share of firms adopting each technology, while
the dark blue bars plot the share of employment in adopting businesses. Clearly the
employment shares exceed the firm shares, generally by a factor of between two and
three.

As an example, firms using AI & Big Data employ almost 63 workers on average in
2015, compared to just under 49 for non-adopters. Furthermore, despite being larger,
firms using this automation technology also paid more per worker: such firms renumer-
ated workers with over e31,000, compared to under e29,000 for businesses not using
this technology.

The adoption of automation technologies varies widely across industries. The ‘Digital’
technologies (Cloud Computing, AI, Big Data, Internet of Things) are most common in
Transport & Communication, Real Estate, and Wholesale & Retail. For example, Cloud
Computing is most commonly found in Real Estate businesses, having been adopted
by almost a third of firms in 2017. Within ‘Digital’ tools, there are significant sectoral
differences: the Internet of Things is heavily adopted in Metal Manufacturing but not
Hospitality, while this adoption pattern is somewhat reversed for the other three tech-
nologies. It is not surprising that ‘Physical’ technologies (Industrial Robotics and 3D
Printing) are concentrated in Manufacturing. For example, Robotics are adopted in over
20% of firms in Metal Manufacturing, and over 10% of businesses in Chemicals, Rubber

1The decline in the 2019 sample is attributed to the COVID-19 pandemic. Data is collected for 2019 at the start of the
following year, from January to May 2020. The Bank of Italy reports that the response rate did not vary systematically
across sectors, firm size classes, and regions. See https://www.bancaditalia.it/pubblicazioni/indagine-
imprese/2019-indagine-imprese/en_statistiche_IIS_01072020.pdf?language_id=1.
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Figure 1. : Technology Adopters: Proportion of Firms and Employment

& Plastics. Robots are least commonly found in Services (Hotels, Restaurants, Whole-
sale, Retail). Similar numbers are obtained for adoption of 3D Printing. All sectoral
results can be found in Appendix B.

Regressions of technology adoption on log employment and age show that employ-
ment is always strongly positively associated, while age is not. The estimated coeffi-
cients on log employment range from 0.03 - 0.08, and are always significant at the 1%
level or below (see Tables C1 to C3 in the Appendix). Thus a percentage rise in employ-
ment raises the likelihood of adoption in the 3 - 8% range. These estimated coefficients
barely change with the inclusion of firm age, which is, generally, small and insignificant.
It is only for AI & Big Data (negatively) and Industrial Robotics (positively) that there is
evidence age is associated with adoption of technology.

Firms that automate tend to adopt more than one of these advanced technologies (see
Tables C4 and C5 in the Appendix). Firms adopting AI overwhelmingly use Big Data in
2017 (90%). These two technologies go hand-in-hand; the benefits of AI and Big Data
depend significantly on use of the other. Likewise, there is significant adoption of both
of the more industrial technologies: Robots and 3D Printing (84% and 86% in 2015 and
2017). This suggests a distinction between firms that automate, by adopting any of these
technologies, and those that do not.

I find that adoption of automation technologies is reversible. A non-negligible propor-
tion of firms that use advanced technologies in time t no longer use them in time t + h.
Figure B17 in the Appendix highlights this result. For example, around 15% of firms
that use AI & Big Data at some point between 2015 and 2019 go from ‘adopter’ to ‘non-
adopter’ in that time frame. A similar share go in the other direction, while less than 3%
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use this technology throughout.2

C. Automation Investment

The share of total investment allocated to advanced technologies increases systemat-
ically with size, but not unconditionally with age. Figure 2 highlights the size relation-
ship. Firms with under 50 employees allocate less than 0.8% of total investment towards
automation technologies, while the share is over twice that for large businesses with over
1000 workers. Further graphs on automation investment shares in Appendix C.

Figure 2. : Investment Share on Advanced Technology Rises with Firm Size.

Note: Each bar shows the average share of investment spent on advanced technologies in each size bucket, averaged over
2016 - 2019.

I regress the share of investment in advanced technology on firm size and age, with
sector and region fixed-effects, in each year 2016 - 2019 separately. The results are
contained in Table C18 in the Appendix.

The results highlight that larger firms invest a greater proportion in these technologies.
Across each year, the estimated coefficient on firm size is large in magnitude and sta-
tistically significant, while age is not. Larger firms invest a greater share in automation
technology, even controlling for age, sector, and region, with an increase of 0.25 - 0.30%
for each percentage rise in employment.3

2It is possible that this finding is partially affected by measurement error. If different respondents fill in the survey, and
are not fully aware of technology adoption within the company, I could spuriously count this as ‘dropping’ a technology.

3The regression specification of Y = β lnX + ε gives β = dY
%∆X which, in this case, is the change in the share of

investment in advanced technologies with a percentage change in employment.
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II. Empirical Findings

This section focuses on automating firms, investigating their productivity and growth
rates, relative to firms that do not automate. I show that firms that automate have pro-
ductivity around 3% higher than non-adopters, although there is variation across the
technologies. It is also the case that automating firms grow at faster rates, in the range of
0.6%.

These findings help build a picture of firm behaviour with regards to automation, and
inform the model. However, they also present challenges in interpreting the causal rela-
tionship: does automation boost firm size, or are larger firms more able and willing to
invest in such technologies? I use three approaches to answer this question: propensity
score matching, two-way fixed effects models, and event studies. Each method provides
strong evidence that automating firms grow faster than non-adopters. Put simply, firms
that automate grow faster when they do so.

A. Productivity of Automating Firms

The relationship between productivity and technology use is an important question to
examine. Both the correlation and the direction of causality can be informative about firm
behaviour. To estimate firm-level productivity, I follow the literature on control function
estimation (Olley and Pakes, 1996). Information on the method used to compute the firm-
level capital stock is in Appendix D. I find that firms that adopt automation technologies
are more productive than those that do not.

The results for estimated TFP across firms that do and don’t adopt automation tech-
nologies are shown in Figure 3. For firms adopting any technology, they are around 3%
more productive than firms which do not, on average. For the ‘Physical’ automation
technologies - Robotics and 3D Printing - adopters are only slightly more productive, at
under 1% and 0.1% respectively. The productivity of firms using ‘Digital’ technologies
such as Artificial Intelligence is much higher, relative to non-adopters: it sits between
2.7 - 6.1%.

B. Automation & Firm Growth

I leverage the panel to label firms as technology adopters, and non-adopters, from
2010 - 2018. Firms that use advanced technologies grow consistently faster than those
that do not, as seen in Table C20 in the Appendix. The difference in growth rates for
adopters and non-adopters is compared across firm size and age distributions. I find that
the average growth rates of automating firms are higher than that of non-adopters, across
the age distribution (see Figure B23 in the Appendix). This finding also holds across the
size distribution for small- and medium-sized firms (Figure B24 in the Appendix) and
when I separate results across technologies (Figure B25 in the Appendix).

To get a sense of the magnitude of these growth differences, I regress firm growth
on size, age, year, and an indicator for whether the firm ever adopts any automation
technology, from 2010 - 2018. The resulting estimated coefficient represents the extra
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Figure 3. : Adopters have higher TFP than Non-Adopters, 2010 - 2018

Note: Each point shows the employment-weighted average estimated TFP for firms that do or do not automate, over the
time period 2010 - 2018. The TFP estimation procedure follows standard control function approaches.

growth associated with the adoption of automation technology. Table 1 contains the
results that indicate firm growth is around 0.6 - 0.7% higher for automating firms. Given
that the difference in growth rates for all firms with 1000+ employees compared to those
with 20 - 49 is around 3% (see Table C17), it is clear that automation technology is
associated with significantly higher firm growth, akin to being a substantially larger firm.

Table 1—: Estimates of technology adoption coefficient
from firm growth regressions.

Coefficient 0.0068∗∗ 0.0065∗∗ 0.0065∗∗ 0.0062∗∗

SE (0.0031) (0.0031) (0.0031) (0.0031)
Age ✓ ✓
Year ✓ ✓

N 25,093 25,076 25,093 25,073

Note: Robust standard errors clustered at firm level. Coefficients labelled by sta-

tistical significance at: ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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C. What Happens When Firms Automate?

It is clear that automation is more common in larger firms, and that they grow faster.
Therefore, identifying the impact of automation on firm size is tricky, as we face an endo-
geneity problem: the sample of firms using advanced technologies seem fundamentally
different pre-adoption to those that never adopt.

MATCHING AUTOMATERS AND NON-AUTOMATERS. — The first method to account for
this problem is propensity-score matching (PSM). Propensity scores for the probability
of adopting automation technology are computed using a logit with a wide range of
potentially useful explanatory variables (age, turnover, investment, exporting behaviour,
wage, hires per worker, fires per worker, blue-collar proportion of workers, alongside
sector and region fixed-effects). Then various methods can be used to ‘match’ automation
adopters to non-adopters, based on the propensity scores. I use the ‘matched’ set of
firms to compare those using technologies to similar non-adopters. I regress log of firm
employment on technology adoption for these matched sets. This provides evidence that
technology adopters are significantly larger than similar non-adopters, as seen in Table
2.

Table 2—: Propensity Score Matching Regression Results, 2015

Dependent variable: Log Employment
Any Tech. Cloud AI & Big Data IoT Robotics 3D Printing

Tech. Adoption 0.461∗∗∗ 0.822∗∗∗ 0.623∗∗∗ 0.475∗∗∗ 0.370∗∗∗ 0.330∗∗

(nearest) (0.06) (0.07) (0.11) (0.08) (0.10) (0.11)

N 1914 1376 674 1042 720 524
Tech. Adoption 0.586∗∗∗ 0.400∗∗∗ 0.818∗∗∗ 0.583∗∗∗ 0.535∗∗∗ 0.537∗∗∗

(full) (0.05) (0.06) (0.07) (0.06) (0.07) (0.08)

N 2554 2580 2547 2541 2544 2538
Tech. Adoption 0.493∗∗∗ 0.046 0.823∗∗∗ 0.680∗∗∗ 0.648∗∗∗ 0.606∗∗∗

(optimal) (0.06) (0.06) (0.11) (0.08) (0.09) (0.11)

N 1914 1376 674 1042 720 524

Note: Estimates are significant at levels of 0.1%: ***, 1%: **, 5% *. Coefficients are for log employment regressed on (binary)
technology adoption, with matching described in brackets: “nearest” performs greedy nearest neighbour matching; “full” performs
optimal full matching, so treated and control observations are assigned to a class and each receives at least one a match; “optimal”
is similar to “nearest”, but aims to minimise the mean of the absolute pair distances in the matched sample.

FIXED EFFECTS. — I leverage the large set of firms over the panel to analyse the relation-
ship between technology adoption and firm size. There are around 3,500 firms that can
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be labelled as adopters or non-adopters of advanced technologies. Compiling a panel of
these firms over the period 2010 - 2018 gives around 25,000 firm-year observations. I
investigate how technology adopters differ over time, and how firms change before and
after adoption.4

I employ two-way fixed-effects (TWFE) models, to estimate the difference in firm
outcomes between adopters and non-adopters. This model has unobserved individual-
and time-specific effects, which is important in this context. Firstly, some firms may be
inherently more productive and have greater growth potential, for a host of unobservable
reasons such as aggregate conditions at entry (Sedláček and Sterk, 2017), ex-ante hetero-
geneity (Sterk, Sedláček and Pugsley, 2021), or managerial practices (Bloom, Sadun and
Reenen, 2016). Secondly, firm outcomes are likely to be tightly linked to the prevailing
aggregate conditions of the macroeconomy and labour market.

However, the TWFE model relies on the underlying assumption of linear additivity of
the two unobserved confounders. Crucially, this leads to ‘treated’ units being compared
to observations described as ‘mismatches’ in the literature (Imai and Kim, 2019). The
intuition here is that we should be evaluating the causal treatment effect by comparing
each ‘treated’ firm to an average of control units from the same firm (within-unit), plus
the average of control firms from the same year (within-time), adjusting for the average
outcome across these two control groups. However, in constructing these control sets, we
may match a firm to one with the same treatment status (e.g. has also adopted automation
technology). Imai and Kim (2019) show it is impossible to avoid this issue, even with
a weighted TWFE estimator which attempts to eliminate mismatches in the within-unit
and within-time sets.

Therefore, I will also employ an event study design to show how firm outcomes change
before and after adoption. This further allows me to look at the differential effects of
adopting automation technology over time, and permits testing of selection by observing
pre-trends. The results from the TWFE models and event studies both show broadly the
same results, both in direction, and magnitude.

The TWFE model is deployed to investigate the difference in employment, blue-collar
employment, and labour productivity (proxied by turnover per worker) between firms
that do and do not automate. These variables are regressed on firm and time fixed-
effects, along with a control for firm age, and the variable of interest: a binary technology
adoption variable (i.e. does firm i ever adopt the technology?).

lnYit = µi + γt +δXit +β1Techit + εit(1)

The set of β are shown in Table 3.
The results in Table 3 provide evidence that firm size rises upon adoption of each of

these advanced technologies, in the range of 2 - 6 %. Although the point estimates for
the effect of adoption on blue-collar employment are negative for Cloud Computing, AI
& Big Data, and 3D Printing, the standard errors are large enough for the latter two

4Given that there is potentially non-random non-response to the questions on automation adoption, I use the class
non-response adjustment factor to re-weight my panel as in Dargatz and Hill (1996).
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Table 3—: Estimated β from homogeneous effect TWFE model: the % change in variables
when adopting technology, relative to non-adopters.

Cloud AI & Big Data IoT Robotics 3D Printing
Employment Coeff 0.020∗∗∗ 0.052∗∗∗ 0.051∗∗∗ 0.042∗∗∗ 0.056∗∗∗

SE (0.0043) (0.0061) (0.0048) (0.0062) (0.0066)
Blue-collar Emp. Coeff −0.036∗ −0.030 0.0008 0.048 −0.025

SE (0.015) (0.027) (0.021) (0.027) (0.028)
Turnover per worker Coeff 0.0057 −0.017 0.017∗ 0.065∗∗∗ 0.019

SE (0.0066) (0.0096) (0.0075) (0.0097) (0.010)

Note: Robust standard errors clustered at firm level. Coefficients labelled by statistical significance at: ∗∗∗ 0.1%, ∗∗ 1%, ∗ 5%.

that I cannot interpret these as statistically significant. Likewise, there is little evidence
that using these advanced technologies raises turnover per worker, apart for Industrial
Robotics and IoT. For robots, the estimate is large (at 6.5%) and statistically significant.
The result for IoT is smaller (at 1.7%) and only holds at a 5% level of significance.

EVENT STUDIES. — Knowledge of when firms adopt technologies also permits an event
study specification in which the firm outcomes are regressed on a set of dummy variables
which indicate the time relative to adoption year. The specification takes the form:

lnYit = µi + γt +δXit +
j̄

∑
j= j, j ̸=−1

β j1(Dit = j)+ εit

where Dit = t −Ai is the ‘relative time’, or the number of periods relative to when firm
i adopted technology in year Ai (Borusyak, Jaravel and Spiess, 2021). The outcomes of
interest Yit are employment, hours, wages, and turnover of firm i in year t. The regression
includes both firm and year fixed effects. The time-invariant controls are sector and
region, and the time-varying control is firm age.

I find some evidence of pre-trends from this event study specification. Results from
this exercise are presented in Figures B19 and B20 of the Appendix. Where these pre-
adoption estimates are negative and statistically significant, this is suggestive that there is
a general pre-adoption trend in firm outcomes. The linear pre-trends in log employment,
log hours, log wages and log turnover5 are noticeable, especially for Industrial Robotics
and 3D Printing.

Therefore, I follow Borusyak, Jaravel and Spiess (2021) and deal with this by iden-

5I actually use the Inverse Hyperbolic Sine (IHS) transformation (Bellemare and Wichman, 2020) for turnover, rather
than log, due to a small number of zeros in the data. But unlike log, the IHS approximation is defined at zero, and the
coefficients can be interpreted analogously.
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tifying the deviation from a linear pre-trend. This is done by dropping two ‘reference’
periods, rather than just one. I drop the earliest period (6 years before adoption) and
continue to exclude the period prior to adoption. The results for Artificial Intelligence
and Big Data are presented in Figure 4. I focus on one technology for ease of exposition.
For all technologies, the results can be found in Figures B21 and B22 in the Appendix.
Although the linear pre-trends are still somewhat apparent, they are shrunk towards zero
and mostly not statistically significant.

Figure 4. : Estimates from Event Study Regression on AI and Big Data

Note: Regression with 3,270 firms and 24,544 firm-year observations. Standard errors clustered at the firm level.

The results from the event studies highlight a clear sustained rise in employment in
the years following adoption of these automation technologies, both at the extensive
and intensive margins. There is evidence that turnover also rises on adoption, but not
for Cloud Computing, nor AI & Big Data. The results for wages have much larger
standard errors, showing no clear pattern, and no statistically significant effects across
all technologies.

The boost to employment seems most pronounced for AI & Big Data, 3D Printing,
and the Internet of Things. This is consistent with the previous results which considered
the impact of adopting automation technologies using TWFE models.

More specifically, most of the point estimates prior to the reference year are insignif-
icant across all technologies, apart from 5 years prior to adoption in some cases. This
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arises from the issue of linear pre-trends, as previously discussed. There is some mild
evidence of a pre-trend in employment for adopters of 3D Printing. Overall I am reason-
ably confident that the event study identifies how firm outcomes change with technology
adoption. However, the existence of a pre-trend implies that my post-adoption point esti-
mates for 3D Printing are biased downwards. The interpretation of such pre-trends is that
adopters of 3D Printing grow more slowly than non-adopters prior to adoption. Thus,
the impact of investing in 3D Printing would actually be larger than my results suggest.

The results show a statistically significant relationship between technology adoption
and firm size, in the range of 1 - 3 % in the first two years post-adoption, and rising to 4 -
11% in the final two years of the sample. These effects are statistically significant across
all technologies, and the magnitudes are not trivial. Furthermore, these results hold at
the intensive margin, with a rise in hours of 2 - 4 % in the first two years, which increases
to 4 - 12 % in the fifth and sixth years post-adoption. Overall, the employment effects
are most muted - but still positive - for Mobile & Cloud Computing.

It seems that firms using automation technologies also experience a large and signifi-
cant rise in turnover: in the first two years, there are increases of 2 - 8 %, with smaller
gains for firms adopting the Digital technologies (Cloud, AI etc.) and bigger returns for
those using Physical technologies (Robots and 3D Printers). After five years, the effect
on turnover is in the range of 8 - 12 % for IoT and Physical technologies. The medium-
run effect for AI & Big Data is around 6%, and although there are large standard errors,
the estimated effect is still generally positive. However, for Mobile & Cloud Computing,
the estimated effect on turnover is not distinguishable from zero.

Finally, firms’ average wage doesn’t seem to change significantly after implementing
automation technologies. For Physical technologies, it seems that adopters’ wages have
essentially no pre-trend - coefficients are close to zero and insignificant - but the point
estimates are positive after adoption. Sometimes these are statistically significant, es-
pecially for firms using 3D Printing technology. Overall, though, the evidence is not
especially strong that automating firms’ wages rise after adoption. This may not be en-
tirely surprising: firms may grow through using new technologies, but the average wage
will only grow to the extent the composition of workers adjusts. If firms that start using
Machine Learning algorithms already had a higher-than-average share of skilled techni-
cal employees, and expand by continuing to hire in that ratio, the average wage may not
rise.

D. Empirical Takeaways

I have highlighted important novel findings on firms that automate. Firstly, I find
that firms adopting automation technologies are already larger and grow faster than non-
adopters. Secondly, firms grow even faster after they adopt these technologies. Taken
together, it seems that automation increases ‘inequality’ across firms. This could have
important consequences for competition among firms, such as increased up-or-out dy-
namics, rising market power, or ‘superstar firm’ effects.

These facts motivate further investigation with a model, to help understand the effects
of automation on firm dynamics and macroeconomic outcomes.
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III. Model

I introduce a model of heterogeneous firms that can endogenously choose to auto-
mate. The aim of this model is twofold. Firstly, it allows me to analyse the impact of
automation when firms differ and have the option to automate tasks, taking into account
the trade-off between marginal and fixed costs from new technologies (De Ridder, 2019;
Lashkari, Bauer and Boussard, 2019). Automation lowers marginal costs, making firms
more productive, but there is a selection effect, as only more productive firms can afford
the associated fixed costs. The impact on overall productivity is ex-ante unclear, and de-
pends on both selection and reallocation. The effect on employment is also not obvious,
as it depends on which firms expand, contract, enter, and exit. Secondly, I am interested
in the partial equilibrium effects. Automation influences the equilibrium price by affect-
ing input costs. This will impact firm entry and exit. Furthermore, changes in demand
for labour caused by automation technologies will lead to a shift down the labour supply
curve, with wage and employment effects.

I take a standard Hopenhayn (1992) heterogeneous firm dynamics model with adjust-
ment costs on labour. I extend it to include a task-based production function (Zeira,
1998; Acemoglu and Restrepo, 2018b), routine and non-routine labour which produce
different sets of tasks, and automation technology which can replace routine workers.

A. Task-based Production Function with Automation

In the standard Hopenhayn (1992) model, firms are heterogeneous in productivity z
and output is determined by one labour input n with decreasing returns to scale. The
production function is y = znα .

Taking inspiration from Acemoglu and Restrepo (2018b), the new production function
depends on productivity and production over a set of tasks x of increasing ‘difficulty’.
This allows for jobs that are made up of a variety of tasks, which might be performed by
different inputs depending on their complexity. Thus firm output is:

(2) lny = lnz+
∫

φ

0
lny(x)dx where φ < 1 for DRTS

The production of each task y(x) is determined by the set of tasks which can be per-
formed by different inputs. I assume that routine labour nr can be perfectly substituted
by automation technology R, such as industrial robots, for some set of tasks. However,
non-routine labour nn cannot be substituted for, among the more complex tasks. This is
depicted in Figure 5, where q < wr highlights that, should a firm have access to automa-
tion technology, the marginal cost of technology is less than the routine labour wage.

Of course these sets of tasks will change over time, as advanced technology improves.
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0 γ φ

automation technology
or routine labour

non-routine labour

q < wr

Increasingly complex tasks x

Figure 5. : Structure of Task-Based Production Function

Production of a task is determined:6

y(x) =

{
r(x) = R(x)+nr(x) for x ∈ [0,γ)
nn(x) for x ∈ [γ,φ)

(3)

The prices of inputs are wn,wr,q for non-routine labour, routine labour, and automa-
tion technology. This price q is the per-unit cost of using the technology, such as the
electricity or computing power associated. I assume that q

wr
< 1 such that automating

is beneficial. However firms must pay a fixed cost ca in each period to use automation
technology R. This can be thought of as the cost of paying a company to maintain the
robots, or an annual payment to access cloud computing services. This does not scale
with the amount of technology used, as does the technology input cost q. The production
function is therefore:

lny = lnz+(φ − γ) lnnn + γ lnr(4)
y = z(nn)αrγ ,(5)

where r = nr +R, and α = φ − γ . This yields a production function that has capital-skill
complementarity, which is an idea going back to at least Griliches (1969).

Heterogeneous Firm Model

Firms produce with decreasing returns to scale and choose inputs nn,nr,R to maximise
profits (dropping the subscript t for ease of notation):

(6) π(z,n−1) = pz(nn)α(nr +R)γ −wnnn −wrnr −qR−g(n,n−1)− c f

where n = nn +nr is the total labour input, n−1 is the previous period choice of labour

6Choosing to split labour inputs into routine and non-routine is inspired by a rich literature on the substitutability
of automation-related technologies with labour inputs. For example, Jaimovich and Siu (2012) look at the changes in
employment shares by occupation group in the US, and find this distinction to be important.
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inputs and g(., .) is an adjustment cost function. Firms differ in productivity z, which
follows AR(1) process:

(7) lnzt+1 = ln z̄+ρ lnzt +σz

The value function of a firm is the largest of the ‘automating’ and ‘non-automating’ value
functions, taking into account the fixed automation cost ca. These value functions, and
the overall value function, are expressed below:

va
t (zt ,nt−1) = max

Rt ,nn
t ,nr

t ≥0

{
π(z,n−1)+β max

{∫
vt+1(zt+1,nt)dF(zt+1|zt),−g(0,nt)

}}(8)

vt(zt ,nt−1) = max
nr

t ,nn
t ≥0,R=0

{
π(z,n−1)+β max

{∫
va

t+1(zt+1,nt)dF(zt+1|zt),−g(0,nt)

}}(9)

ṽ(zt ,nt−1) = max{va
t (zt ,nt−1)− ca,vt(zt ,nt−1)}(10)

As in Hopenhayn (1992), there is a cut-off level of productivity z∗ such that all firms
with z ≥ z∗ do not exit. Furthermore, there will be a cut-off level of productivity za such
that all firms with z ≥ za will automate. The equilibrium price is pinned down by the
free-entry condition:

(11) ve(z) =
∫

z
v(z)dG(z) = ce

Finally the law of motion for the distribution of firms can be computed:

(12) µt+1(z′) =
∫

z≥z∗
µt(z)dF(z′|z)︸ ︷︷ ︸

Surviving incumbents

+MG(z′)︸ ︷︷ ︸
Entrants

where µt(z) is the mass of firms with productivity z at time t, M > 0 is a constant mass of
potential entrants, and G(z) is the productivity distribution for entrants, which is simply
the stationary distribution of the AR(1) process. I solve for M in stationary equilibrium
by exploiting the linearity of µt(z), as in Hopenhayn (1992). Effectively, the mass of
entrants is chosen so that equation (12) holds, and there is no (net) entry nor exit.

To close the model, I assume downwards-sloping demand for final output D(p) = D̄
p ,

where D̄ > 0 is exogenous. Price is endogenous, and satisfies the free-entry condition
in equation (11). In equilibrium, output is equal to demand, so Y =

∫
y(z)µ(z)dF(z) =
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D(p). This equilibrium condition shows that adjusting D̄ simply scales the values of
all equilibrium objects up or down. D̄ is chosen to clear the labour market. The labour
supply curve is upwards-sloping with Frisch elasticity λ , following Clementi and Palazzo
(2016): Ls(wn) = (wn)λ , where wn is the non-routine labour wage (and the routine labour
wage is set as the numeraire).7

This model is partial equilibrium, so the labour market is not endogenised from optimi-
sation on the household side. However, an upwards-sloping labour supply curve allows
variation in labour demand to lead to changes in the equilibrium wage and employment.
If instead a Melitz (2003) framework were chosen, where labour supply is fixed, any
changes to labour demand would not affect aggregate employment. This would limit the
model from speaking to aggregate employment effects, as all the adjustment would occur
through the wage channel.

To summarise, the equilibrium conditions are as follows,

(13) D(p) =
D̄
p
, Y =

∫
y(z)µ(z)dF(z), Ls(wn) = (wn)λ , Ld =

∫
n(z)µ(z)dF(z)

B. Solution Method

To solve this problem, I take first-order conditions (FOCs) of the static profit maximi-
sation problem without labour adjustment costs, for firms that automate, and those that
do not.8 The presence of the labour adjustment cost prevents a closed-form solution for
optimal input demands, yielding two potential solution approaches. One is to solve these
numerically, but this was computationally intensive, which slowed down the calibration
process. The second is to approximate lagged employment across a grid,9 creating a
labour cost adjustment matrix for all possible combinations between time periods. A
brief outline of the solution algorithm is presented here:

1) Solve optimal input demands across grid of productivity and lagged employment.

2) Use the free-entry condition to find equilibrium price, both with and without the
presence of automation technology.

a) Guess price p0

b) Take FOCs of static firm problem to find maximised profit π(p0;z,n−1).

c) Apply value function iteration on this starting point until convergence.

7As an example, raising D̄ shifts the mass of firms across the productivity distribution up in equal proportion.
Labour demand is firm-level demand multiplied by the mass of firms, integrated over the productivity distribution:∫

n(z)µ(z)dF(z). This is clearly impacted by D̄, which scales the distribution. In equilibrium, labour demand equates
to labour supply, which is the non-routine wage to the power of the Frisch elasticity. Given the calibration sets the non-
routine wage at 1.2 times the numeraire routine wage, I choose D̄ such that the labour market equilibrium holds in the
non-automation calibration. When there are changes to labour demand, for example induced by automation, this will lead
to changes in the real wage and employment.

8Dropping adjustment costs as a starting point allows for closed-form solutions for the static FOCs, as we ignore the
dynamic element of the labour input choice.

9I ran the algorithm without automation technology, to give upper and lower bounds for total employment demand.
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d) Compute expected value of entry, and check free-entry condition holds.

e) Adjust guess of price until free-entry condition holds.

3) Find cutoff productivity level for entry, and for automation.

4) Compute firm choices and distributions.

C. Calibration

The chosen labour adjustment cost function is quadratic, such that g(nt ,nt−1) =
τ

2 (nt −
nt−1)

2 where nt is the sum of routine and non-routine labour hired in period t. The
purpose of this adjustment cost is to better match the data, as justified by long-standing
literature (Kydland and Prescott, 1991; Hamermesh, 1989; Cogley and Nason, 1995).
The labour adjustment cost is for total labour hired: firms can move workers from routine
to non-routine tasks, and it is the hiring and firing of workers which incurs a cost.

Table 4—: Model Parameters

Parameter Value Target
pre-set

β Discount rate 0.95 Match annual IR over period
ce Entry cost 0.82× c f Barseghyan and DiCecio (2011)
wn
wr

Wage ratio 1.23 Vannutelli, Scicchitano and Bi-
agetti (2021)

q Automation price 0.975 By assumption
γ Routine share 0.66 - α Residual labour share
ρ AR1 coefficient 0.8
σ AR1 stdev 0.2
λ Frisch elasticity 2.0 Clementi and Palazzo (2016)

calibrated
α Non-routine share 0.40 Match avg firm size
z̄ AR1 intercept 2.06 Match avg labour productivity

c f Fixed cost 35.6 Match exit rate in Manaresi (2015)
ca Automation cost 6.23 Match % firms that automate
τ Labour adjustment cost 20.0 Match avg growth rates
D̄ Demand scalar 4.16 Clear labour market without automation

The pre-set calibration parameters are fairly standard, or taken from existing litera-
ture. From Vannutelli, Scicchitano and Biagetti (2021), the difference in log wage for
non-routine to routine workers is 0.21. This implies wn

wr = e0.21 = 1.23. The automation
price is set below the routine wage by assumption. This somewhat arbitrary assumption
is relatively innocuous; it means at least some firms will have an incentive to automate,
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and I calibrate the fixed automation cost to match the share of firms using the technology.
Thus the decision to adopt automation technology is governed by the fixed automation
cost, and the automation price is simply set such that some firms automate. It doesn’t
seem the results are particularly sensitive to this ‘automation price’.10 The calibrated
parameters are chosen to target observables which are sensitive to that parameter. The
non-routine share is chosen to match the average firm size, as this will determine the
labour share in highly productive, automating firms. The AR(1) intercept is chosen to
match the average labour productivity, as it determines the level of the productivity dis-
tribution from which firms draw. The fixed and automation costs are naturally chosen to
match the exit rate and the share of automating firms. The adjustment cost on labour is
chosen to match the average growth rate of firms, as this affects the speed of readjustment
towards the ‘optimal’ labour choice.

The calibrated parameters are chosen to find the minimum of the weighted average of
the absolute distance between the model and targeted moments, where the weights are
the inverse of the targets themselves.11

D. Results

I report a set of targeted and non-targeted moments in the model and data in Table
5. The model moments are either steady-state targets, or computed from a simulation
of 200,000 firms over 20 periods, where automation is introduced and firms adjust their
behaviour over time to this technological change.12 When necessary, I choose the sim-
ulated moments instead of steady-state moments, where I need to track firms that do or
do not automate.

Whenever possible, the moments are compared to the data from the Italian firm survey
introduced in Section II. However, firms may leave the panel if they become too small,
which does not necessarily imply firm exit. Hence I use the exit rate in Manaresi (2015)
which has the full sample of private Italian firms.

For the non-targeted moments, the routine share of employment of 43% is taken from
an Italian study by Vannutelli, Scicchitano and Biagetti (2021), while all other moments
from the data are computed from the survey in this paper.

The model fit is good for some moments, but not all. The firms are a bit larger in the
model, on average, and grow at a slightly higher rate. The share of firms that automate
is a few percent below the data. However, the exit rate is about twice as high as the data,
and average labour productivity is much lower than the data (although the units make
this a less useful target).

10Calibration with other values of q simply leads to different values of ca to the target share of automated firms, and
the other calibrated parameters do not change in any significant way.

11Such weights force the algorithm to be ‘unit-agnostic’, else it would fit larger targets better than smaller ones.
12After calibrating the model, I take the resulting parameters and simulate 200,000 firms over 20 time periods. This

allows me to introduce automation to the model, and analyse the long-run effects as firms respond: by optimally choosing
inputs each period, deciding whether to automate, and exiting the market. I can follow firms over time, identifying if and
when they choose to automate, and the resulting impact. I shocks firms’ productivity each period following the AR(1)
process, and firms choose the optimal inputs on the productivity grid. They automate only if their productivity is equal or
greater than za, and exit if it is below z∗. If they exit, the firm stays inactive. I do not allow firms to enter for computational
ease; this does not change the results which are ratios and time-averages.
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The model does well at matching the non-targeted moments. The routine share of
employment matches the data very well, while automating firms are slightly larger than
the data in terms of employment (48% in model; 42% in data), but about right in output
(53% in model; 55% in data). The relative growth rates, relative exit rates, and relative
productivity for automating firms have the right sign in the model, but the magnitudes
don’t match the data.

Relative growth rates of automating firms are high in the model compared to the data.
In the simulation, the difference is almost 5 p.p. greater growth for automaters, compared
to firms that don’t automate. In contrast, this difference is under 1 p.p. in the data.
Automating firms exit less frequently than non-automaters in the model, as we see in the
data. However, the difference in exit rates is over 17 p.p. in the data, compared to just 9
p.p. in the model. Finally, productivity of automating firms is 19% higher in the model,
compared to just 3% in the data.

Table 5—: Model Results

Model Data
Non-targeted

Routine share of employment 0.44 0.431

Share of employment in automating firms 0.48 0.42⋆

Share of output in automating firms 0.53 0.55⋆

Difference in growth rates for automating firms (p.p.) 0.047† 0.007⋆

Difference in exit rates for automating firms (p.p.) -0.089† -0.176⋆

Relative productivity for automating firms (p.p) 0.19† 0.03⋆

Targeted
Average firm size 62.3 50.0⋆

Exit rate 0.198 0.0982

Average labour productivity 61.79 135.5⋆3

% firms that automate 0.27 0.30⋆

Average growth rate 0.021† 0.015⋆

†: moments estimated off long-run averages from firm simulation exercise.
⋆: data from Italian firm panel described in Section II.
1Vannutelli, Scicchitano and Biagetti (2021)
2Manaresi (2015)
3Simply computed as average turnover per worker hour. In 2017, the mean turnover per worker was e221,894. The average
weekly hours were 31.5, so over a year we get 1,638. Thus average turnover per worker hour is e135.47.

Another exercise to check the model describes the data well is to calibrate the non-
automated model as a starting point. To this end, I set the nonroutine to routine wage
ratio at rate consistent with the data ‘pre-automation’ in the 1980s, at 1.1 (Basso, 2019).
Then I back out the labour supplies implied by the model. Automation is introduced the
model, and wages are computed to clear the labour market. The nonroutine to routine
wage ratio the model gives is 1.285, which is slightly higher than the data, but in the right
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direction. Overall it seems that this baseline model does a reasonable job of matching
the data.

E. What is the Impact of Automation?

I initially solve the model when automation technology unavailable to firms.13 Then I
solve the model with automation, and compare the outcomes. I document the aggregate
and firm-level changes when automation technology becomes available in this partial
equilibrium framework. Table 6 contains the results.

It is important to underscore that the magnitude of the effects presented here do depend
on the elasticities of product demand and labour supply. Automation technology affects
firm decisions. Aggregation across firms will shift the aggregate output supply curve
and labour demand curve. The extent to which this affects partial equilibrium outcomes
depends on the aforementioned elasticities.

Automation technology permits highly-productive firms to grow, and pushes down the
equilibrium output price via free-entry, reducing the number of operating firms. A fall
in total labour demand leads to a shift down the upwards-sloping labour supply curve,
leading to a fall in aggregate employment. The extent of the fall in employment and the
real wage depend on the elasticity of labour supply.

Table 6—: Percentage point change relative to ‘No Automation’ model

Aggregates: Employment -2.49
Price -0.02
# firms -8.51
Output-weighted productivity +1.34
Exit rate +0.10
Real wage -1.24

Firm Level: Employment per firm +6.58
Output per worker +0.16
% firms that automate +27.4

The key result in Table 6 is that automation leads to an aggregate fall in employment,
alongside a firm-level rise in employment. These two results have been found in the data,
and can be reconciled in this heterogeneous-firm framework.

When cheaper automation technology is available to firms, they purchase this input
if they are productive enough. These firms expand due to the low-cost input, and earn
significantly greater profits. The equilibrium effect is a lower price, as determined by the
free-entry condition. This is because automating firms can produce output more cheaply,

13Imagine that initially the per-unit price of automation qt is greater than that of routine labour, or that automation
technology is too undeveloped to produce any tasks that humans perform.
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Figure 6. : Average firm-level employment from simulation when automation is intro-
duced.

raising the value of producing output. The lower output price reduces returns to low-
productivity firms, so they exit. Overall, the reallocation towards more-productive firms
leads to a rise in output-weighted productivity.

At a firm level, the average firm hires more workers and produces more, due to the
greater skew of output towards highly productive firms. Firms that automate are larger,
as they are able to expand with the new technology. The rise in average firm size over
time can be seen in the model simulation in Figure 6, which plots the average firm-level
employment once automation technology is introduced.14

However, there is a fall in aggregate labour demand (firm-level employment multiplied
by the mass of firms). This is due to the fall of the total mass of firms. As labour demand
falls, the equilibrium shifts down the upwards-sloping labour supply curve. Thus, the
introduction of automation technology in production leads to a fall in aggregate employ-
ment and the real wage. The fall in employment is skewed towards routine labour, which
takes up a smaller share of total employment.

Figure 6 highlights an important dynamic uncovered in the empirical section. Firms
that are already large and productive will invest in automation technology, and grow
larger - this is why automaters start much larger than their technologically-lagging coun-
terparts. This also explains why the average size of non-automaters falls: the largest

14Automation technology is made available in the fourth period of the simulation, but the dynamics are very similar
whenever it is introduced.
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of this group leave, upgrading their technology, which reduces the average size of non-
automaters. In sum, the average size of all firms increases, due to the combination of the
higher exit rate, and the reallocation of firms between the two groups.

I track firms that automate, before and after automation is introduced, and produce a
within-model event study to compare to the data. This is presented in Figure 7, which
shows:

• Data: event study regression on employment for adopters of AI & Big Data, with
linearized pre-trends (Borusyak, Jaravel and Spiess, 2021). The filled in points are
statistically significant at the 1% level.

• Model: log difference in employment for automating firms relative to non-automating
firms, normalized to initial difference.

Figure 7. : Model Event Study for Automating Firms

The model reproduces the results from the regression very well. As in the empir-
ical exercise, automating firms are the same size as non-adopters pre-adoption (when
controlling for a set of characteristics), but grow faster after implementing automation
technologies. That the model accurately produces the shape and magnitude of the event
study is promising, as this is an outcome of the mechanisms of the model, and not di-
rectly targeted. It is further evidence that the model can account for the findings from the
data.
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This model can also reconcile the aggregate findings that automation technology re-
duces aggregate employment (Acemoglu and Restrepo, 2018a; Dauth et al., 2021), with
my firm-level evidence that automaters grow on adoption. This model highlights the
important role for heterogeneity, reallocation, and equilibrium effects.

IV. Conclusion

This paper seeks to understand the adoption of automation technologies among firms,
and the equilibrium effects thereof. On the empirical side, I take a novel dataset on
firm use of advanced technologies, and I show that automating firms tend to be larger,
but also grow faster, both before and after they adopt. The employment growth doesn’t
show up in blue-collar workers, suggesting that complementarities between automation
technologies and skilled workers are strong and important. Furthermore, adopters of
new technologies are more productive, but I do not find that productivity is boosted by
adoption.

Taking stock of these findings, I extend Hopenhayn (1992)’s seminal heterogeneous
firm model to include two types of labour - routine and nonroutine - alongside automation
capital which can be substituted for the former. In the model, automation is achieved only
by highly productive firms, due to the fixed cost of using this technology. These firms
benefit most from automation, allowing them to expand. The equilibrium effect lowers
prices, forcing low-productivity firms out of the market. Unsurprisingly, workers lose
out significantly, especially those in routine occupations. Importantly, such a model can
reconcile the growing evidence that firms grow when they adopt advanced technologies,
but the aggregate effect on employment is often negative.
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SURVEY DETAILS

This section includes further details on the Bank of Italy’s “Survey of Industrial and
Service Firms”.15

A1. Survey Design

The survey collects annual data on firm employment, investment, turnover, debt, and
other structural information. It also has further detail on specific issues, which may not be
asked annually, such as strategies, governance, technological and organisational factors.
Up until 1998, only manufacturing firms with more than 50 employees were covered, but
this was expanded in 1999 to include extractive and energy firms. Firms with more than
20 workers were included from 2002.

The survey population is divided into strata and firms are chosen randomly from each
for the sample (one-stage stratified sample). Each strata are defined by economic activity,
firm size, and region of head office. Employment is measured as the average number of
workers during the year. Firms included in the previous year of the survey are always
contacted, but may not be kept in the sample if they change activity class or fall below
the threshold number of employees (they are replaced by firms of the same industry and
size).

The data undergoes extensive quality checks: answers must fit within the range for the
question; the panel data must be consistent; outliers must be checked. Statistical methods
such as ‘selective editing’ are used to summarise the impact of outliers, to reduce the
requirement to re-contact firms.

A2. Advanced Technologies Questions

The automation technology questions are contained here in full. In 2015, firms were
asked if they use or intend to adopt the following advanced technologies:

1) Mobile broadband and the cloud (e.g. wireless technology, apps, smartphones,
tablets, high-speed broadband, and cloud management software)

2) Artificial intelligence and big data (e.g. collection and use of large data sets that,
with the application of specific algorithms for machine learning, can provide sup-
port to decision making; possible applications are: in remote access diagnostics,
defining algorithms for financial investments, patent-related or legal searches)

3) The internet of things (e.g. the use of technologies that, by means of advanced
sensors, allow apparatus to be used in the production and commercial processes
promoting their integration)

4) Industrial robotics using artificial intelligence (advanced robotics)

15https://www.bancaditalia.it/pubblicazioni/metodi-e-fonti-note/metodi-note-2017/en\
_survey\_methodology\_invind.pdf?language_id=1
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5) 3D printing

In 2017, firms were asked if they use or intend to adopt the following advanced technolo-
gies:

1) Cloud computing

2) E-commerce

3) Big data (e.g. the collection and use of large quantities of data which, also through
machine learning algorithms, can assist decision-making; possible applications:
distance diagnosis, financial trading algorithms, patent and legal research)

4) Internet of things (e.g. the use of technologies that, by means of advanced sen-
sors,enable communication between the various devices used in production and
business processes, facilitating their integration)

5) Artificial intelligence

6) Industrial robotics using artificial intelligence (advanced robotics)

7) 3D printing

In 2019, firms were asked if they use or intend to adopt the following advanced technolo-
gies:

1) Cloud computing

2) Big data

3) Artificial intelligence

4) Advanced robotics

5) 3D printing

A3. Firm Exit

There is some attrition in the panel, as firms leave and are replaced. “The firms ob-
served in the previous edition of the survey are always contacted again if they are still
part of the target population, while those no longer wishing to take part are replaced
with others in the same branch of activity and size class.”16 The main reasons given for
leaving the survey are change of activity and staff cutbacks to below the entry thresh-
old. These numbers are somewhat higher than estimates of the Italian exit rate of 4 -8 %
(Carree, Santarelli and Verheul, 2008).

16https://www.bancaditalia.it/pubblicazioni/metodi-e-fonti-note/metodi-note-2017/en\
_survey\_methodology\_invind.pdf?language_id=1
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Table A1—: Italian Survey Data: Firm Exit Proportions

Year % in subsequent year % in preceding year
2012 0.82 -
2013 0.84 0.82
2014 0.86 0.83
2015 0.84 0.84
2016 0.86 0.87
2017 0.85 0.83
2018 - 0.88

Note: the second column contains the proportion of firms appearing in that year which are present in the panel the

following year. The third contains the proportion of firms appearing in that year which were present in the panel the

previous year.
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FURTHER FIGURES

Figure B1. : Cloud Computing Adoption by Firm Size

Figure B2. : Cloud Computing Adoption by Industry (2017)
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Figure B3. : AI & Big Data Adoption by Firm Size

Figure B4. : Industry Adoption of AI & Big Data (2015)
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Figure B5. : Internet of Things Adoption across Age and Size Distributions (2015)

Figure B6. : Age-size Distribution of Firms using Robotics

Note: each bar is ratio of firms using Industrial Robots in each age × size cell.
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Figure B7. : Adoption of Industrial Robotics by Industry (2017)
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Figure B8. : 3D Printing Adoption by Firm Age and Size
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Figure B9. : Adoption of 3D Printing across Industries
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Figure B10. : Adoption of Automation Technologies by Firm Size and Age (2015)

Figure B11. : Adoption of Automation Technologies by Firm Size and Age (2017)

Figure B12. : Adoption of Automation Technologies by Firm Size and Age (2019)
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Figure B13. : Firm Age × Size Distributions of Advanced Technology Spending 2016/17
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Figure B14. : Firm Age × Size Distributions of Advanced Technology Spending 2018/19
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Figure B15. : Sectoral Distribution of Advanced Technology Spending 2016 - 2017
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Figure B16. : Sectoral Distribution of Advanced Technology Spending 2018 - 2019



44 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Figure B17. : Technology Switching Behaviour, 2015 - 2019

Note: Consider firms surveyed in 2015, 2017, and 2019. Never Use: firm does not adopt technology in any period. Drop:
firm initially uses technology in 2015, but doesn’t in subsequent periods. Adopt: firm doesn’t initially use technology
in 2015, but does adopt in a subsequent period. Always Use: firm uses technology in all periods. Drop & Adopt: firm
initially uses technology in 2015, doesn’t in a subsequent period, but then adopts it again in the future.
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Figure B18. : Investment Share on Advanced Technology by Firm Age.
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Figure B19. : Estimates from Event Study Regression

(a) Standard event study design on employment, without controlling for pre-
trends (regression run on 3,197 - 3,271 firms and 24,036 - 24,571 firm-year
observations.)

(b) Standard event study design on hours worked, without controlling for
pre-trends (regression run on 3,197 - 3,271 firms and 24,036 - 24,571 firm-
year observations.)
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Figure B20. : Estimates from Event Study Regression

(a) Standard event study design on turnover, without controlling for pre-
trends (regression run on 3,197 - 3,271 firms and 24,036 - 24,571 firm-year
observations.)

(b) Standard event study design on wages, without controlling for pre-
trends (regression run on 3,197 - 3,271 firms and 24,036 - 24,571 firm-year
observations.)
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Figure B21. : Estimates from Event Study Regression

(a) Event study design on employment with pre-trends linearized (regres-
sion run on 3,197 - 3,271 firms and 24,036 - 24,571 firm-year observations.)

(b) Event study design on hours worked with pre-trends linearized (regres-
sion run on 3,197 - 3,271 firms and 24,036 - 24,571 firm-year observations.)
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Figure B22. : Estimates from Event Study Regression

(a) Event study design on turnover with pre-trends linearized (regression
run on 3,197 - 3,271 firms and 24,036 - 24,571 firm-year observations.)

(b) Event study design on wages with with pre-trends linearized (regression
run on 3,197 - 3,271 firms and 24,036 - 24,571 firm-year observations.)



50 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Figure B23. : Average Growth Rates (2010 - 2018) for Automation Adopters compared
to Non-Adopters, Across Age Distribution

Figure B24. : Average Growth Rates (2010 - 2018) for Automation Adopters compared
to Non-Adopters, Across Size Distribution
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Figure B25. : Average Growth Rates (2010 - 2018) for Automation Adopters compared
to Non-Adopters

Figure B26. : Average Growth Rates (2010 - 2018) for Automation Adopters vs Non-
Adopters, By Size and Age
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FURTHER TABLES

Table C1—: Estimated Coefficients from Technology Adoption Regressions 2015

Dependent variable: Technology Adoption
Mobile & Cloud AI & Big Data Internet of Things Industrial Robotics 3D Printing

log(Emp.) 0.033∗∗ 0.034∗∗ 0.039∗∗∗ 0.041∗∗∗ 0.052∗∗∗ 0.052∗∗∗ 0.040∗∗∗ 0.038∗∗∗ 0.027∗∗∗ 0.025∗∗∗

(0.010) (0.011) (0.009) (0.009) (0.009) (0.009) (0.006) (0.006) (0.006) (0.006)

Age −0.0005 −0.0007 −0.0002 0.0009∗∗ 0.0004
(0.0005) (0.0004) (0.0004) (0.0003) (0.0003)

Note: Estimates are significant at levels of 0.1%: ***, 1%: **, 5% *.

Table C2—: Estimated Coefficients from Technology Adoption Regressions 2017

Dependent variable: Technology Adoption
Cloud Computing AI & Big Data Internet of Things Industrial Robotics 3D Printing

log(Emp.) 0.074∗∗ 0.073∗∗ 0.064∗∗∗ 0.065∗∗∗ 0.076∗∗∗ 0.076∗∗∗ 0.036∗∗∗ 0.036∗∗∗ 0.033∗∗∗ 0.033∗∗∗

(0.010) (0.010) (0.006) (0.006) (0.006) (0.006) (0.005) (0.005) (0.004) (0.004)

Age 0.0005 −0.0005∗ −0.00007 0.0004∗∗ −0.00006
(0.0005) (0.0004) (0.0004) (0.0003) (0.0003)

Note: Estimates are significant at levels of 0.1%: ***, 1%: **, 5% *.

Table C3—: Estimated Coefficients from Technology Adoption Regressions 2019

Dependent variable: Technology Adoption
Cloud Computing AI & Big Data Industrial Robotics 3D Printing

log(Emp.) 0.084∗∗∗ 0.086∗∗∗ 0.060∗∗∗ 0.062∗∗∗ 0.054∗∗∗ 0.053∗∗∗ 0.031∗∗∗ 0.031∗∗∗

(0.016) (0.016) (0.013) (0.013) (0.007) (0.007) (0.006) (0.006)

Age −0.0008 −0.0011 0.0007 0.00001
(0.0008) (0.0008) (0.0005) (0.0002)

Note: Estimates are significant at levels of 0.1%: ***, 1%: **, 5% *.
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Table C4—: Adoption of Multiple Technologies (2015)

Mobile & Cloud AI & Big Data IoT Robots 3D Printing
Mobile & Cloud 1.00 0.39 0.44 0.37 0.35
AI & Big Data - 1.00 0.83 0.81 0.82

IoT - - 1.00 0.80 0.79
Robots - - - 1.00 0.84

3D Printing - - - - 1.00

Note: proportion of technology adopters adopting another technology in 2015.

Table C5—: Adoption of Multiple Technologies (2017)

Cloud AI Big Data IoT Robots 3D Printing E-Comm.
Cloud 1.00 0.79 0.81 0.78 0.76 0.77 0.76

AI - 1.00 0.90 0.83 0.88 0.88 0.77
Big Data - - 1.00 0.84 0.84 0.85 0.77

IoT - - - 1.00 0.81 0.81 0.72
Robots - - - - 1.00 0.86 0.72

3D Printing - - - - - 1.00 0.75
E-Comm. - - - - - - 1.00

Note: proportion of technology adopters adopting another technology in 2017.

Table C6—: Number of Firms Adopting Technologies (2015)

Mobile & Cloud AI & Big Data IoT Robots 3D Printing
Yes 2,524 440 642 485 360
No 934 2,953 2,742 2,912 3,037
NA 937 1,002 1,011 998 998

% Yes (all) 0.57 0.10 0.15 0.11 0.08
% Yes (answered) 0.73 0.13 0.19 0.14 0.11

Note: Answers from firms on use of advanced technologies in 2015, along with proportion of firms adopting each technology (of all firms, and
of firms that were asked).

Table C7—: Share of Firms Adopting Individual Technologies (2015)

Mobile & Cloud AI & Big Data IoT Robots 3D Printing
All firms 0.56 0.09 0.12 0.06 0.05

Answered firms 0.73 0.11 0.16 0.08 0.07
Note: The weighted proportions of firms that use advanced technologies in 2015.
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Table C8—: Share of Firms Adopting Technologies (2015)

Any Tech. Digital Tech. Physical Tech.
All firms 0.23 0.16 0.10

Answered firms 0.30 0.21 0.13
Note: The weighted proportions of firms that use combinations of advanced technologies in 2015.

Table C9—: Number of Firms Adopting Technologies (2017)

Cloud AI Big Data IoT Robots 3D Printing E-Comm.
Yes 849 226 416 733 477 375 871
No 2,976 3,591 3,404 3,092 3,349 3,443 2,974
NA 566 574 571 566 565 573 546

% Yes (all) 0.19 0.05 0.10 0.17 0.11 0.09 0.20
% Yes (answered) 0.22 0.06 0.11 0.19 0.12 0.10 0.23

Note: answers from firms on use of advanced technologies in 2017, along with proportion of firms adopting each technology (of all firms, and
of firms that were asked).

Table C10—: Share of Firms Adopting Individual Technologies (2019)

Cloud AI Big Data IoT Robots 3D Printing E-Comm.
All firms 0.18 0.03 0.06 0.11 0.07 0.05 0.19

Answered firms 0.21 0.03 0.07 0.13 0.08 0.06 0.22
Note: weighted proportions of firms that use advanced technologies in 2017.

Table C11—: Share of Firms Adopting Technologies (2017)

Any Tech. Digital Tech. Physical Tech.
All firms 0.28 0.25 0.10

Answered firms 0.33 0.29 0.11
Note: weighted proportions of firms that use combinations of advanced technologies in 2017.
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Table C12—: Number of Firms Adopting Technologies (2019)

Cloud AI Big Data Robots 3D Printing
Yes 633 149 293 317 192
No 1,440 1,916 1,778 1,751 1,877
NA 1,116 1,124 1,118 1,121 1,120

% Yes (all) 0.20 0.05 0.09 0.10 0.06
% Yes (answered) 0.31 0.07 0.14 0.15 0.09

Note: answers from firms on use of advanced technologies in 2019, along with proportion of firms adopting each technology (of all firms, and
of firms that were asked).

Table C13—: Share of Firms Adopting Individual Technologies (2019)

Cloud AI Big Data Robots 3D Printing
All firms 0.18 0.03 0.07 0.04 0.03

Answered firms 0.28 0.04 0.11 0.07 0.05
Note: weighted proportions of firms that use advanced technologies in 2019.

Table C14—: Share of Firms Adopting Technologies (2019)

Any Tech. Digital Tech. Physical Tech.
All firms 0.24 0.20 0.06

Answered firms 0.37 0.32 0.10
Note: weighted proportions of firms that use combinations of advanced technologies in 2019.
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Table C15—: Advanced Technology Adopters vs Non-Adopters: Summary Statistics
2015

Mobile & Cloud AI & Big Data
Adopters Non-Adopters Adopters Non-Adopters

Age 34.9 35.7 33.0 35.4
Log(employment) 3.94 3.83 4.14 3.89

Log(wage per worker) (e) 10.28 10.28 10.35 10.27
Hours per worker (weekly) 31.46 31.40 31.65 31.49

Turnover per worker (thou., e) 459 345 499 423
Fixed investment per worker (thou., e) 10.9 8.12 14.5 9.61

% blue-collar 0.51 0.61 0.43 0.55
% export sales 0.09 0.11 0.06 0.10

Terminations per worker 0.18 0.14 0.17 0.17
Hirings per worker 0.19 0.13 0.18 0.17
Number of firms 2524 934 440 2953

Internet of Things Industrial Robotics
Adopters Non-Adopters Adopters Non-Adopters

Age 35.1 35.1 41.1 34.7
Log(employment) 4.13 3.87 4.22 3.88

Log(wage per worker) (e) 10.32 10.27 10.33 10.28
Hours per worker (weekly) 31.81 31.46 31.05 31.56

Turnover per worker (thou., e) 397 439 331 442
Fixed investment per worker (thou., e) 12.4 9.78 8.22 10.4

% blue-collar 0.51 0.55 0.64 0.53
% export sales 0.04 0.11 0.05 0.10

Terminations per worker 0.16 0.17 0.11 0.17
Hirings per worker 0.18 0.18 0.11 0.18
Number of firms 642 2742 485 2912

3D Printing
Adopters Non-Adopters Adopters Non-Adopters

Age 38.5 34.9
Log(employment) 4.16 3.89

Log(wage per worker) (e) 10.33 10.28
Hours per worker (weekly) 31.65 31.52

Turnover per worker (thou., e) 273 444
Fixed investment per worker (thou., e) 5.71 10.5

% blue-collar 0.56 0.54
% export sales 0.11 0.10

Terminations per worker 0.08 0.17
Hirings per worker 0.11 0.18
Number of firms 360 3037

Note: Summary statistics from 2015 for firms that do and don’t use advanced technologies. All values
(other than number of observations) are weighted means. Bold values are the larger of the two, if there
is a significant difference between adopters and non-adopters at the 1% level, computed with Welch’s
t-test and the Welch-Sattherwaite equation for degrees of freedom.
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Table C16—: Automating Firms vs Traditional Firms: Summary Statistics

Employment log(Hours) log(Wage) Age
‘Digital’ Automating Firms 59.6 7.41 10.32 34.1

Non-Adopters 47.6 7.40 10.27 35.4

‘Physical’ Automating Firms 63.8 7.40 10.31 38.7
Non-Adopters 48.1 7.40 10.28 34.6

Note: ‘Digital’ automation technologies are Mobile & Cloud, AI & Big Data, and the Internet of Things.
‘Physical’ automation technologies are Industrial Robotics, and 3D Printing. Note that hours are average
hours per worker, over the year.

Table C17—: Binned Variables Firm Growth Regressions 2008 - 2019

Dependent variable: Employment Growth
Size 50-99 100-199 200-499 500-999 1000+

0.014∗∗∗ 0.021∗∗∗ 0.022∗∗∗ 0.029∗∗∗ 0.028∗∗∗

(0.002) (0.003) (0.002) (0.004) (0.004)

Size (control for Age) 50-99 100-199 200-499 500-999 1000+
0.014∗∗∗ 0.022∗∗∗ 0.023∗∗∗ 0.030∗∗∗ 0.029∗∗∗

(0.002) (0.003) (0.002) (0.004) (0.004)

Age 10-20 20-30 30-40 40-60 60+
−0.002 −0.006 −0.008 −0.011∗ −0.018∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Age (control for Size) 10-20 20-30 30-40 40-60 60+

−0.002 −0.006 −0.007 −0.011∗ −0.021∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)

Note: Coefficients represent estimated growth rates relative to omitted bin (for firm size: 20 - 49 employees; for
firm age: 0 - 10 years). Regression includes year fixed effects. N = 38,702. Estimates are significant at levels of
1%: ***, 5%: **, 10% *.
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Table C18—: Estimated Coefficients from Advanced Tech. Investment Regressions

Dependent variable: Share of Investment in Advanced Tech.
2016 (N = 3756) 2017 (N = 3926)

log(Emp.) 0.279∗∗∗ 0.278∗∗∗ 0.254∗∗∗ 0.337∗∗∗ 0.329∗∗∗ 0.299∗∗∗

(0.025) (0.025) (0.026) (0.028) (0.028) (0.028)

Age −0.0000004 0.0002 0.0034∗∗ 0.0026∗

(0.001) (0.001) (0.001) (0.001)

2018 (N = 3715) 2019 (N = 2075)
log(Emp.) 0.294∗∗∗ 0.295∗∗∗ 0.261∗∗∗ 0.275∗∗∗ 0.274∗∗∗ 0.258∗∗∗

(0.030) (0.030) (0.030) (0.039) (0.039) (0.040)

Age −0.0004 −0.002 0.0005 −0.001
(0.001) (0.001) (0.001) (0.002)

Fixed Effects ✓ ✓

Note: Estimates are significant at levels of 0.1%: ***, 1%: **, 5% *. Fixed effects are sector and region.

Table C19—: Estimated Coefficients from Firm Growth Regressions 2010 - 2018

Dependent variable: Employment Growth
log(Emp.) 0.014∗∗∗ 0.015∗∗∗ 0.014∗∗∗ 0.015∗∗∗ 0.366∗∗∗ 0.366∗∗∗ 0.365∗∗∗ 0.364∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.09) (0.09) (0.09) (0.09)

Age −0.0003∗∗∗ −0.0003∗∗∗ 0.0005 −0.0006
(0.00007) (0.00007) (0.0004) (0.0004)

Sector FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓
N 20450 20446 20450 20446 20450 20446 20450 20446

Note: Estimates are significant at levels of 0.1%: ***, 1%: **, 5% *.
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Table C20—: Average Growth Rates by Technology, for Adopters and Non-Adopters

Cloud Computing AI & Big Data IoT Industrial Robotics 3D Printing
Adopters 1.0065 1.0133 1.0133 1.0122 1.0171

Non-Adopters 0.9989 1.0036 1.0033 1.0038 1.0037

Note: Firms are compiled in a panel from 2010 - 2018 and labelled as adopters or
non-adopters of each technology. Each number here represents the average employment
growth rate of firms in these groups over this time period.
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PERPETUAL INVENTORY METHOD

Firm-level productivity estimation is computed using control function methods. These
require firm-level capital stock. This section explains the Perpetual Inventory Method
(PIM) used to construct a measure of capital stock, followed by the productivity estima-
tion approaches.

PERPETUAL INVENTORY METHOD. — The Perpetual Inventory Method (PIM) allows con-
struction of firm-level capital stocks when such data is unavailable, but investment data
is present. The method here follows Martin (2002). The PIM is constructed using the
following equation:

Kt = (1−δ )Kt−1 + it .

where Kt is the capital stock in period t, and it is investment in period t. However,
to use this method, we need K0 - the initial capital stock of a firm - which is not in this
survey. To construct this series, each firm’s K0 is an employment-weighted share of total
investment in the year they first appear in the survey. Capital stock is then constructed
for all future years with the above equation. The depreciation rate is taken to be 10%.


